Ir al contenido

Documat


Super-Explosion and Inverse Canard Explosion in a Piecewise-Smooth Slow–Fast Leslie–Gower Model

  • Huiping Zhang [1] ; Yuhua Cai [2] ; Jianhe Shen [2]
    1. [1] Fujian Normal University
    2. [2] Fujian Normal University & Fujian Normal University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 2, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-023-00936-3
  • Enlaces
  • Resumen
    • In this paper, we study a slow–fast Leslie-type predator–prey model with piecewiselinear functional response. Our approach is based on the geometric singular perturbation theory and the canard theory. When the fold point of the critical curve is lower than the transcritical bifurcation point, theoretical and numerical analyses show that a supercritical super-explosion occurs near the non-smooth corner followed by an inverse canard explosion close to the smooth fold. The critical values of parameters corresponding to these dynamical behaviors are obtained. Moreover, a stable relaxation oscillation is generated by the supercritical super-explosion, which will vanish as the occurrence of the inverse canard explosion.

  • Referencias bibliográficas
    • 1. Benoit, E., Callot, J.L., Diener, F., Diener, M.: Chasse au canard. Collect. Math. 32, 37–119 (1981)
    • 2. Eckhaus, W.: Relaxation Oscillations Including a Standard Chase on French Ducks. Lecture Notes in Mathematics, vol. 985. Springer-Verlag,...
    • 3. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174, 312–368 (2001)
    • 4. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic pointsfold and canard points in two dimensions....
    • 5. Dumortier, F., Roussarie, R.H.: Canard Cycles and Center Manifolds. Memoirs of the American Mathematical Society, Providence (1996)
    • 6. De Maesschalck, P., Dumortier, F., Roussarie, R.: Canard Cycles: From Birth to Transition. Springer, Berlin (2021)
    • 7. Brøns, M., Krupa, M., Wechselberger, M.: Mixed mode oscillations due to the generalized canard phenomenon. Fields Inst. Commun. 49, 39–63...
    • 8. Desroches, M., Guckenheimer, J., Krauskopf, B., Kuehn, C., Osinga, H.M., Wechselberger, M.: Mixedmode oscillations with multiple time scales....
    • 9. Szmolyan, P., Wechselberger, M.: Canards in R3. J. Differ. Equ. 177, 419–453 (2001)
    • 10. Wechselberger, M.: Existence and bifurcation of canards in R3 in the case of a folded node. SIAM J. Appl. Dyn. Syst. 4, 101–139 (2005)
    • 11. Zhao, L., Shen, J.: Relaxation oscillations in a slow-fast predator-prey model with weak Allee effect and Holling-IV functional response....
    • 12. Wang, C., Zhang, X.: Relaxation oscillations in a slow-fast modified Leslie-Gower model. Appl. Math. Lett. 87, 147–153 (2019)
    • 13. Carmona, V., Fernández-García, S., Teruel, A.: Birth, transition and maturation of canard cycles in a piecewise linear system with a flat...
    • 14. Rotstein, H.G., Coombes, S., Gheorghe, A.M.: Canard-like explosion of limit cycles in two-dimensional piecewise-linear models of FitzHugh-Nagumo...
    • 15. Desroches, M., Fernández-García, S., Krupa, M., Prohens, R., Teruel, A.E.: Piecewise-linear (PWL) canard dynamics: simplifying singular...
    • 16. Desroches, M., Freire, E., Hogan, S.J., Ponce, E., Thota, P.: Canards in piecewise-linear systems: explosions and super-explosions. Proc....
    • 17. Roberts, A., Gendinning, P.: Canard-like phenomena in piecewise-smooth Van der Pol systems. Chaos 24, 023138 (2014)
    • 18. Roberts, A., Saha, R.: Relaxation oscillations in an idealized ocean circulation model. Clim. Dyn. 48, 2123–2134 (2017)
    • 19. Roberts, A.: Canard explosion and relaxation oscillation in planar, piecewise-smooth, continuous systems. SIAM J. Appl. Dyn. Syst. 15,...
    • 20. Ai, S., Sadhu, S.: The entry-exit theorem and relaxation oscillations in slow-fast planar systems. J. Differ. Equ. 268, 7220–7249 (2020)
    • 21. Li, S., Wang, X., Li, X., Wu, K.: Relaxation oscillations for Leslie-type predator-prey model with Holling Type I response functional...
    • 22. Li, S., Wang, C., Wu, K.: Relaxation oscillations of a slow-fast predator-prey model with a piecewise smooth functional response. Appl....
    • 23. Seo, G., DeAngelis, D.L.: A predator-prey model with a Holling type I functional response including a predator mutual interference. J....
    • 24. Seo, G., Kot, M.: A comparison of two predator-prey models with Holling’s type I functional response. Math. Biosci. 212, 161–179 (2008)
    • 25. Zhang, Y., Xu, Z., Liu, B., Chen, L.: Dynamic analysis of a Holling I predator-prey system with mutual interference concerning pest control....
    • 26. Saha, T., Pal, P.J., Banerjee, M.: Slow-fast analysis of a modified Leslie-Gower model with Holling type I functional response. Nonlinear...
    • 27. Arnold, V.: Dynamical Systems V: Bifurcaton Theory and Catastrophe Theory. Springer, Berlin (1994)
    • 28. Zegeling, A., Kooij, R.E.: Singular perturbations of the Holling I predator-prey system with a focus. J. Differ. Equ. 269, 5434–5462 (2020)
    • 29. Dumortier, F., Roussarie, R.: Canard cycles with two breaking parameters. Discrete Contin. Dyn. Syst. 17, 787 (2007)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno