Ir al contenido

Documat


On a Fractal–Fractional-Based Modeling for Influenza and Its Analytical Results

  • Hasib Khan [1] ; Altaf Hussain Rajpar [3] ; Jehad Alzabut [4] ; Muhammad Aslam [5] ; Sina Etemad [2] ; Shahram Rezapour [6]
    1. [1] Prince Sultan University

      Prince Sultan University

      Arabia Saudí

    2. [2] Azarbaijan Shahid Madani University

      Azarbaijan Shahid Madani University

      Irán

    3. [3] Jouf University
    4. [4] Prince Sultan University & OST˙IM Technical University
    5. [5] Shaheed Benazir Bhutto University
    6. [6] Duy Tan University & Azarbaijan Shahid Madani University & China Medical University Hospital
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 2, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • There have been reports of influenza virus resistance in the past, and because this virus has the potential of resistance to cause several pandemics and also is lethal, we investigate the conditions under which the strains coexist as a result. The non-resistant strain undergoes mutation, giving rise to the resistant strain. The incidence rates of the nonresistant and saturated-resistant strains are bi-linear and saturated, respectively. In this study, two flu strain models (resistant and non-resistant) are investigated in a fractal– fractional sense, and the presence of solutions, stability, and numerical simulations are examined for various orders and derivative dimensions. Using numerical values from freely accessible open resources, a numerical technique that is based on Lagrange’s interpolation polynomial is constructed and validated for a particular example.

  • Referencias bibliográficas
    • 1. Mohler, L., Flockerzi, D., Sann, H., Reichl, U.: Mathematical model of influenza A virus production in large-scale microcarrier culture....
    • 2. Kreijtz, J.H.C.M., Bodewes, R., van Amerongen, G., Kuiken, T., Fouchier, R.A.M., Osterhaus, A.D.M.E., Rimmelzwaan, G.F.: Primary influenza...
    • 3. Webster, R.G., Peiris, M., Chen, H., Guan, Y.: H5N1 outbreaks and enzootic influenza. Emerg. Infect. Dis. 12, 3–8 (2006). https://doi.org/10.3201/eid1201.051024
    • 4. Rasmussen, S.A., Jamieson, D.J., Uyeki, T.M.: Effects of influenza on pregnant women and infants. Am. J. Obstet. Gynecol. 207, S3-8 (2012)....
    • 5. Bouvier, N.M., Lowen, A.C., Palese, P.: Oseltamivir-resistant influenza A viruses are transmitted efficiently among guinea pigs by direct...
    • 6. Ward, P., Small, I., Smith, J., Suter, P., Dutkowski, R.: Oseltamivir (Tamiflu) and its potential for use in the event of an influenza...
    • 7. Schunemann, H.J., Hill, S.R., Kakad, M., Bellamy, R., Uyeki, T.M., et al.: WHO Rapid Advice Guidelines for pharmacological management of...
    • 8. Baranovich, T., Saito, R., Suzuki, Y., Zaraket, H., Dapat, C., et al.: Emergence of H274Y oseltamivirresistant A (H1N1) influenza viruses...
    • 9. Monto, A.S., McKimm-Breschkin, J.L., Macken, C., Hampson, A.W., Hay, A., et al.: Detection of influenza viruses resistant to neuraminidase...
    • 10. Carr, J., Ives, J., Kelly, L., Lambkin, R., Oxford, J., Mendel, D., Tai, L., Roberts, N.: Influenza virus carrying neuraminidase with...
    • 11. Herlocher, M.L., Truscon, R., Elias, S., Yen, H.L., Roberts, N.A., et al.: Influenza viruses resistant to the antiviral drug oseltamivir:...
    • 12. Abed, Y., Goyette, N., Boivin, G.: A reverse genetics study of resistance to neuraminidase inhibitors in an influenza A/H1N1 virus. Antivir....
    • 13. Rameix-Welti, M.A., Enouf, V., Cuvelier, F., Jeannin, P., van der Werf, S.: Enzymatic properties of the neuraminidase of seasonal H1N1...
    • 14. Baz, M., Abed, Y., Simon, P., Hamelin, M.E., Boivin, G.: Effect of the neuraminidase mutation H274Y conferring resistance to oseltamivir...
    • 15. Matsuzaki, Y., Mizuta, K., Aoki, Y., Suto, A., Abiko, C., et al.: A two-year survey of the oseltamivirresistant influenza A (H1N1) virus...
    • 16. Bloom, J.D., Gong, L.I., Baltimore, D.: Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science...
    • 17. Kaymakamzade, B., Baba, I.A., Hincal, E.: Global stability analysis of oseltamivir-resistant influenza virus model. Procedia Comput. Sci....
    • 18. Ives, J.A.L., Carr, J.A., Mendel, D.B., Tai, C.Y., Lambkin, R., et al.: The H274Y mutation in the influenza A/H1N1 neuraminidase active...
    • 19. Wu, Y., Ahmad, S., Ullah, A., Shah, K.: Study of the fractional-order HIV-1 infection model with uncertainty in initial data. Math. Probl....
    • 20. Ali, A., Alshammari, F.S., Islam, S., Khan, M.A., Ullah, S.: Modeling and analysis of the dynamics of novel coronavirus (COVID-19) with...
    • 21. Ali, A., Islam, S., Khan, M.R., Rasheed, S., Allehiany, F.M., Baili, J., Khan, M.A., Ahmad, H.: Dynamics of a fractional order Zika virus...
    • 22. Ali, A., Hamou, A.A., Islam, S., Muhammad, T., Khan, A.: A memory effect model to predict COVID19: analysis and simulation. Comput. Methods...
    • 23. Ali, A., Ullah, S., Khan, M.A.: The impact of vaccination on the modeling of COVID-19 dynamics: a fractional order model. Nonlinear Dyn....
    • 24. Aba Oud, M.A., Ali, A., Alrabaiah, H., Ullah, S., Khan, M.A., Islam, S.S.: A fractional order mathematical model for COVID-19 dynamics...
    • 25. Ali, A., Iqbal, Q., Asamoah, J.K., Islam, S.: Mathematical modeling for the transmission potential of Zika virus with optimal control...
    • 26. Ali, A., Iqbal, Q., Asamoah, J.K., Islam, S.: Mathematical modeling for the transmission potential of Zika virus with optimal control...
    • 27. Butt, A.I., Rafiq, M., Ahmad, W., Ahmad, N.: Implementation of computationally efficient numerical approach to analyze a Covid-19 pandemic...
    • 28. Hanif, A., Kashif Butt, A.I., Ahmad, W.: Numerical approach to solve Caputo–Fabrizio-fractional model of corona pandemic with optimal...
    • 29. Ahmad, W., Abbas, M.: Effect of quarantine on transmission dynamics of Ebola virus epidemic: a mathematical analysis. Eur. Phys. J. Plus...
    • 30. Ahmad, W., Rafiq, M., Abbas, M.: Mathematical analysis to control the spread of Ebola virus epidemic through voluntary vaccination. Eur....
    • 31. Rafiq, M., Ahmad, W., Abbas, M., Baleanu, D.: A reliable and competitive mathematical analysis of Ebola epidemic model. Adv. Differ. Equ....
    • 32. Padder, A., Almutairi, L., Qureshi, S., Soomro, A., Afroz, A., Hincal, E., Tassaddiq, A.: Dynamical analysis of generalized tumor model...
    • 33. Qureshi, S., Abro, K.A., Gomez-Aguilar, J.F.: On the numerical study of fractional and non-fractional model of nonlinear Duffing oscillator:...
    • 34. Jan, R., Qureshi, S., Boulaaras, S., Pham, V.T., Hincal, E., Guefaifia, R.: Optimization of the fractionalorder parameter with the error...
    • 35. Qureshi, S., Akanbi, M.A., Shaikh, A.A., Wusu, A.S., Ogunlaran, O.M., Mahmoud, W., Osman, M.S.: A new adaptive nonlinear numerical method...
    • 36. Alquran, M., Ali, M., Gharaibeh, F., Qureshi, S.: Novel investigations of dual-wave solutions to the Kadomtsev–Petviashvili model involving...
    • 37. Atangana, A.: Fractal–fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex...
    • 38. Khan, H., Ahmad, F., Tunc, O., Idrees, M.: On fractal–fractional Covid-19 mathematical model. Chaos Solitons Fractals 157, 111937 (2022)....
    • 39. Gomez-Aguilar, J.F., Cordova-Fraga, T., Abdeljawad, T., Khan, A., Khan, H.: Analysis of fractal–fractional malaria transmission model....
    • 40. Ghori, M.B., Naik, P.A., Zu, J., Eskandari, Z., Naik, M.U.: Global dynamics and bifurcation analysis of a fractional-order SEIR epidemic...
    • 41. Naik, P.A., Zu, J., Naik, M.U.: Stability analysis of a fractional-order cancer model with chaotic dynamics. Int. J. Biomath. 14(06),...
    • 42. Naik, P.A., Ghoreishi, M., Zu, J.: Approximate solution of a nonlinear fractional order HIV model using Homotopy analysis method. Int....
    • 43. Ahmad, A., Farman, M., Naik, P.A., Zafar, N., Akgul, A., Saleem, M.U.: Modeling and numerical investigation of fractional-order bovine...
    • 44. Naik, P.A., Yavuz, M., Qureshi, S., Zu, J., Townley, S.: Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives...
    • 45. Shah, K., Arfan, M., Mahariq, I., Ahmadian, A., Salahshour, S., Ferrara, M.: Fractal–fractional mathematical model addressing the situation...
    • 46. Ali, Z., Rabiei, F., Shah, K., Khodadadi, T.: Qualitative analysis of fractal–fractional order COVID-19 mathematical model with case study...
    • 47. Alqhtani, M., Saad, K.M.: Fractal–fractional Michaelis–Menten enzymatic reaction model via different kernels. Fractal Fract. 6, 13 (2022)....
    • 48. Saad, K.M., Alqhtani, M., Gomez-Aguilar, J.F.: Fractal–fractional study of the hepatitis C virus infection model. Res. Phys. 19, 103555...
    • 49. Etemad, S., Avci, I., Kumar, P., Baleanu, D., Rezapour, S.: Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09...
    • 50. Rvachev, L.A., Longini, J.I.M.: A mathematical model for the global spread of influenza. Math. Biosci. 75(1), 3–22 (1985)
    • 51. Beauchemin, C.A., Handel, A.: A review of mathematical models of influenza A infections within a host or cell culture: lessons learned...
    • 52. Boianelli, A., Nguyen, V.K., Ebensen, T., Schulze, K., Wilk, E., Sharma, N., Stegemann-Koniszewski, S., Bruder, D., Toapanta, F.R., Guzman,...
    • 53. Ain, Q.T., Khan, A., Abdeljawad, T., Gómez-Aguilar, J.F., Riaz, S.: Dynamical study of varicella-zoster virus model in sense of Mittag–Leffler...
    • 54. Khan, Z.A., Khan, A., Abdeljawad, T., Khan, H.: Computational analysis of fractional order imperfect testing infection disease model....
    • 55. Thirthar, A.A., Abboubakar, H., Khan, A., Abdeljawad, T.: Mathematical modeling of the COVID-19 epidemic with fear impact. AIMS Math....
    • 56. Ain, Q., Khan, A., Ullah, M.I., Alqudah, M.A., Abdeljawad, T.: On fractional impulsive system for methanol detoxification in human body....
    • 57. Abro, K.A., Atangana, A.: Numerical and mathematical analysis of induction motor by means of ABfractal–fractional differentiation actuated...
    • 58. Baba, I.A., Ahmad, H., Alsulami, M.D., Abualnaja, K.M., Altanji, M.: A mathematical model to study resistance and non-resistance strains...
    • 59. Veeresha, P., Ilhan, E., Prakasha, D.G., Baskonus, H.M., Gao, W.: A new numerical investigation of fractional order susceptible-infected-recovered...
    • 60. Baishya, C., Achar, S.J., Veeresha, P., Kumar, D.: Dynamical analysis of fractional yellow fever virus model with efficient numerical...
    • 61. Gao, W., Veeresha, P., Cattani, C., Baishya, C., Baskonus, H.M.: Modified predictor-corrector method for the numerical solution of a fractional-order...
    • 62. Rahman, M.: Generalized fractal–fractional order problems under non-singular Mittag–Leffler kernel. Results Phys. 35, 105346 (2022)
    • 63. Shah, K., Abdalla, B., Abdeljawad, T., Gul, R.: Analysis of multipoint impulsive problem of fractionalorder differential equations. Bound....
    • 64. Li, B., Zhang, T., Zhang, C.: Investigation of financial bubble mathematical model under fractal– fractional Caputo derivative. Fractals...
    • 65. Ahmad, S., Shah, K., Abdeljawad, T., Abdalla, B.: On the approximation of fractal–fractional differential equations using numerical inverse...
    • 66. Atangana, A., Araz, S.I.: Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications. Adv. Differ....
    • 67. Araz, S.I.: Analysis of a Covid-19 model: optimal control, stability and simulations. Alex. Eng. J. 60(1), 647–658 (2021)
    • 68. Atangana, A., Araz, S.I.: Modeling and forecasting the spread of COVID-19 with stochastic and deterministic approaches: Africa and Europe....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno