Ir al contenido

Documat


The Well-Posedness for the Distributed-Order Wave Equation on R

  • Yan Ling Zhou [1] ; Yong Zhou [2] ; Xuan-Xuan Xi [1]
    1. [1] Xiangtan University

      Xiangtan University

      China

    2. [2] Macau University of Science and Technology

      Macau University of Science and Technology

      RAE de Macao (China)

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 2, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Distributed-order calculus can summarize the intrinsic multiscale effects of integer and fractional order operators, and construct a more complex physical model. The paper is devoted to study the time distributed-order wave equation. First, we give the definition of distributed-order integral operators I (μ) in α ∈ [1, 2], and from the definition of the integral operator, we found that the operator has similar properties to the fractional integral operators. Next, according to the properties of the distributedorder integral operator and Laplace transform, we obtain the expression of the solution of the distributed-order wave equation. Then we use the resolvent operator to estimate the solution operators. At last, we further studied the liner or semilinear wave problem with the distributed-order derivative on RN and used the contraction mapping principle to prove the existence and uniqueness of mild solution.

  • Referencias bibliográficas
    • 1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)
    • 2. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
    • 3. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)
    • 4. Luchko, Y.: Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal....
    • 5. Kumar, A., Rajeev, Gómez-Aguilar, J.F.: A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity,...
    • 6. Morales-Delgado, V.F., Taneco-Hernández, M.A., Vargas-De-León, C., Gómez-Aguilar, J.F.: Exact solutions to fractional pharmacokinetic models...
    • 7. Nuruddeen, R.I., Gómez-Aguilar, J.F., Razo-Hernández, J.R.: Fractionalizing, coupling and methods for the coupled system of two-dimensional...
    • 8. Alharbi, R., Alshaery, A.A., Bakodah, H.O., Gómez-Aguilar, J.F.: Revisiting (2+1)-dimensional Burgers’ dynamical equations: analytical...
    • 9. Islam, M.T., Sarkar, T.R., Abdullah, F.A., Gómez-Aguilar, J.F.: Characteristics of dynamic waves in incompressible fluid regarding nonlinear...
    • 10. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional...
    • 11. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation. I. Volterra-type equation. Proc. R. Soc....
    • 12. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier...
    • 13. Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340, 252–281 (2008)
    • 14. Gorenflo, R., Luchko, Y., Stojanovi´c, M.: Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability...
    • 15. Li, Z., Kian, Y., Soccorsi, E.: Initial-boundary value problem for distributed order time-fractional diffusion equations. Asymptot. Anal....
    • 16. Jin, B., Lazarov, R., Sheen, D., et al.: Error estimates for approximations of distributed order time fractional diffusion with nonsmooth...
    • 17. Li, Z., Fujishiro, K., Li, G.: Uniqueness in the inversion of distributed orders in ultraslow diffusion equations. J. Comput. Appl. Math....
    • 18. Peng, L., Zhou, Y., He, J.W.: The well-posedness analysis of distributed order fractional diffusion problems on RN . Monatshefte für Mathematik...
    • 19. Peng, L., Zhou, Y.: The analysis of approximate controllability for distributed order fractional diffusion problems. Appl. Math. Optim....
    • 20. Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225, 96–104 (2009)
    • 21. Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction–diffusion equations. J. Comput. Appl. Math. 275, 216–227...
    • 22. Ding, W., Patnaik, S., Sidhardh, S., et al.: Applications of distributed-order fractional operators: a review. Entropy 23, 110 (2021)
    • 23. Kubica, A., Ryszewska, K.: Fractional diffusion equation with distributed-order Caputo derivative. J. Integr. Equ. Appl. 31, 195–243 (2017)
    • 24. Amann, H.: Linear and Quasilinear Parabolic Problems. Birkhauser, Berlin (1995)
    • 25. Bobylev, A.V., Cercignani, C.: The inverse Laplace transform of some analytic functions with an application to the eternal solutions of...
    • 26. Fedorov, V.E.: Generators of analytic resolving families for distributed order equations and perturbations. Mathematics 8, 1306 (2020)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno