Ir al contenido

Documat


Tensorial and Hadamard product inequalities for functions of selfadjoint operators in Hilbert spaces in terms of Kantorovich ratio

  • Sever Silvestru Dragomir [1]
    1. [1] Mathematics, College of Engineering & Science Victoria University, PO Box 14428, Melbourne City 8001, Australia
  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 38, Nº 2, 2023, págs. 237-250
  • Idioma: inglés
  • DOI: 10.17398/2605-5686.38.2.237
  • Enlaces
  • Resumen
    • Let H be a Hilbert space. In this paper we show among others that, if f, g are continuous on the interval I with 0 <γ ≤ f(t)/g(t)≤ Γ for t ∈ I and if A and B are selfadjoint operators with Sp (A), Sp (B) ⊂ I, then and if A and B are selfadjoint operators with Sp (A), Sp (B) ⊂ I, then The above inequalities also hold for the Hadamard product “ ◦ ” instead of tensorial product “ ⊗ ”.

  • Referencias bibliográficas
    • T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl. 26 (1979), 203...
    • H. Araki, F. Hansen, Jensen’s operator inequality for functions of several variables, Proc. Amer. Math. Soc. 128 (7) (2000), 2075 – 2084.
    • J.S. Aujila, H.L. Vasudeva, Inequalities involving Hadamard product and operator means, Math. Japon. 42 (1995), 265 – 272.
    • S.S. Dragomir, Bounds for the normalised Jensen functional, Bull. Austral. Math. Soc. 74 (3) (2006), 417 – 478.
    • S.S. Dragomir, A. McAndrew, A note on numerical comparison of some multiplicative bounds related to weighted arithmetic and geometric means,...
    • J. Fujii, The Marcus-Khan theorem for Hilbert space operators. Math. Japon. 41 (1995), 531 – 535.
    • S. Furuichi, Refined Young inequalities with Specht’s ratio, J. Egyptian Math. Soc. 20 (2012), 46 – 49.
    • F. Kittaneh, Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl. 361 (2010), 262 – 269.
    • F. Kittaneh, Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra 59 (2011), 1031 – 1037.
    • K. Kitamura, Y. Seo, Operator inequalities on Hadamard product associated with Kadison’s Schwarz inequalities, Sci. Math. 1 (2) (1998), 237...
    • A. Korányi, On some classes of analytic functions of several variables, Trans. Amer. Math. Soc. 101 (1961), 520 – 554.
    • W. Liao, J. Wu, J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math. 19 (2)...
    • J. Pečarić, T. Furuta, J. Mićić Hot, Y. Seo, “ Mond-Pečarić Method in Operator Inequalities ”, Monogr. Inequal. 1, ELEMENT, Zagreb, 2005.
    • W. Specht, Zur Theorie der elementaren Mittel, Math. Z. 74 (1960), 91 – 98.
    • M. Tominaga, Specht’s ratio in the Young inequality, Sci. Math. Jpn. 55 (2002), 583 – 588.
    • S. Wada, On some refinement of the Cauchy-Schwarz Inequality, Linear Algebra Appl. 420 (2007), 433 – 440.
    • G. Zuo, G. Shi, M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal. 5 (2011), 551 – 556.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno