Ir al contenido

Documat


A threshold modeling for nonlinear time series of counts: application to COVID-19 data

  • Nisreen Shamma [1] ; Mehrnaz Mohammadpour [1] ; Masoumeh Shirozhan [2]
    1. [1] University of Mazandaran

      University of Mazandaran

      Irán

    2. [2] Water and Wastewater Company, Mazandaran Province, Mazandaran, Iran
  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 32, Nº. 4, 2023, págs. 1195-1229
  • Idioma: inglés
  • DOI: 10.1007/s11749-023-00869-8
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This article studies a threshold autoregressive model with the dependent thinning structure for modeling nonlinear time series of counts. Some properties are derived for the model and two approaches in estimation are applied, the modified conditional least square and conditional maximum likelihood methods which are adjusted by the Min-Min algorithm. The unknown threshold parameter is estimated using the nested sub-sample search algorithm and the minimum of maximized log-likelihood function methods. The efficiency of the estimators is evaluated using a simulation study. The application of the model is discussed on the COVID-19 data set.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno