Ir al contenido

Documat


Oscillatory phenomena for higher-order fractional Laplacians

  • Autores: Nicola Abatangelo, Sven Jarohs
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 68, Nº. 1, 2024, págs. 267-286
  • Idioma: inglés
  • DOI: 10.5565/PUBLMAT6812412
  • Enlaces
  • Resumen
    • We collect some peculiarities of higher-order fractional Laplacians (−∆)s , s > 1, with special attention to the range s ∈ (1, 2), which show their oscillatory nature. These include the failure of the polarization and P´olya–Szeg˝o inequalities and the explicit example of a domain with sign-changing first eigenfunction. In spite of these fluctuating behaviours, we prove how the Faber–Krahn inequality still holds for any s > 1 in dimension one.

  • Referencias bibliográficas
    • N. Abatangelo, S. Jarohs, and A. Saldana , Green function and Martin kernel for higherorder fractional Laplacians in balls, Nonlinear Anal....
    • N. Abatangelo, S. Jarohs, and A. Saldana , Integral representation of solutions to higherorder fractional Dirichlet problems on balls, Commun....
    • N. Abatangelo, S. Jarohs, and A. Saldana˜ , On the loss of maximum principles for higherorder fractional Laplacians, Proc. Amer. Math. Soc....
    • N. Abatangelo, S. Jarohs, and A. Saldana , Positive powers of the Laplacian: from hypersingular integrals to boundary value problems, Commun....
    • N. Abatangelo, S. Jarohs, and A. Saldana˜ , Fractional Laplacians on ellipsoids, Math. Eng. 3(5) (2021), Paper no. 038, 34 pp. DOI: 10.3934/mine.2021038
    • N. Abatangelo and E. Valdinoci, Getting acquainted with the fractional Laplacian, in: Contemporary Research in Elliptic PDEs and Related Topics,...
    • M. S. Ashbaugh and R. D. Benguria, On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions, Duke Math. J....
    • A. Baernstein, II, A unified approach to symmetrization, in: Partial Differential Equations of Elliptic Type (Cortona, 1992), Sympos. Math....
    • G. Bourdaud and Y. Meyer, Fonctions qui op`erent sur les espaces de Sobolev, J. Funct. Anal. 97(2) (1991), 351–360. DOI: 10.1016/0022-1236(91)90006-Q
    • C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lect. Notes Unione Mat. Ital. 20, Springer, [Cham]Unione Matematica Italiana,...
    • E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136(5) (2012), 521–573....
    • S. Dipierro and H.-C. Grunau, Boggio’s formula for fractional polyharmonic Dirichlet problems, Ann. Mat. Pura Appl. (4) 196(4) (2017), 1327–1344....
    • R. J. Duffin, On a question of Hadamard concerning super-biharmonic functions, J. Math. Physics 27 (1949), 253–258. DOI: 10.1002/sapm1948271253
    • R. J. Duffin, The maximum principle and biharmonic functions, J. Math. Anal. Appl. 3(3) (1961), 399–405. DOI: 10.1016/0022-247X(61)90066-X
    • B. Dyda, A. Kuznetsov, and M. Kwa´snicki, Eigenvalues of the fractional Laplace operator in the unit ball, J. Lond. Math. Soc. (2) 95(2) (2017),...
    • P. R. Garabedian, A partial differential equation arising in conformal mapping, Pacific J. Math. 1(4) (1951), 485–524. DOI: 10.2140/PJM.1951.1.485
    • N. Garofalo, Fractional thoughts, in: New Developments in the Analysis of Nonlocal operators, Contemp. Math. 723, American Mathematical Society,...
    • F. Gazzola, H.-C. Grunau, and G. Sweers, Polyharmonic Boundary Value Problems. Positivity Preserving and Nonlinear Higher Order Elliptic Equations...
    • A. Greco and S. Jarohs, Foliated Schwarz symmetry of solutions to a cooperative system of equations involving nonlocal operators, J. Elliptic...
    • P. Grisvard, Elliptic Problems in Nonsmooth Domains, Reprint of the 1985 original, With a foreword by Susanne C. Brenner, Classics Appl. Math....
    • J. Hadamard, Mémoire sur le problème d’analyse relatif à l’´equilibre des plaques elastiques encastrées, Mem. Sav. etrang. 33 (1908), 1–128....
    • S. Jarohs, Symmetry of solutions to nonlocal nonlinear boundary value problems in radial sets, NoDEA Nonlinear Differential Equations Appl....
    • S. Jarohs and T. Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Ann. Mat. Pura Appl. (4) 195(1)...
    • V. A. Kozlov, V. A. Kondrat’ev, and V. G. Maz’ya, On sign variability and the absence of “strong” zeros of solutions of elliptic equations...
    • O. Lopes and M. Maris¸, Symmetry of minimizers for some nonlocal variational problems, J. Funct. Anal. 254(2) (2008), 535–592. DOI: 10.1016/j.jfa.2007.10.004
    • R. Musina and A. I. Nazarov, A note on truncations in fractional Sobolev spaces, Bull. Math. Sci. 9(1) (2019), 1950001, 7 pp. DOI: 10.1142/S1664360719500012
    • N. S. Nadirashvili, Rayleigh’s conjecture on the principal frequency of the clamped plate, Arch. Rational Mech. Anal. 129(1) (1995), 1–10....
    • M. Nakai and L. Sario, Green’s function of the clamped punctured disk, J. Austral. Math. Soc. Ser. B 20(2) (1977), 175–181. DOI: 10.1017/S0334270000001557
    • Y. J. Park, Logarithmic Sobolev trace inequality, Proc. Amer. Math. Soc. 132(7) (2004), 2075–2083. DOI: 10.1090/S0002-9939-03-07329-5
    • X. Ros-Oton and J. Serra, Local integration by parts and Pohozaev identities for higher order fractional Laplacians, Discrete Contin. Dyn....
    • S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Edited and with a foreword by...
    • J. B. Seif, On the Green’s function for the biharmonic equation in an infinite wedge, Trans. Amer. Math. Soc. 182 (1973), 241–260. DOI: 10.2307/1996533
    • H. S. Shapiro and M. Tegmark, An elementary proof that the biharmonic Green function of an eccentric ellipse changes sign, SIAM Rev. 36(1)...
    • G. Sweers, An elementary proof that the triharmonic Green function of an eccentric ellipse changes sign, Arch. Math. (Basel) 107(1) (2016),...
    • G. Sweers, Correction to: An elementary proof that the triharmonic Green function of an eccentric ellipse changes sign, Arch. Math. (Basel)...
    • G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3(4) (1976), 697–718.
    • G. Talenti, On the first eigenvalue of the clamped plate, Ann. Mat. Pura Appl. (4) 129 (1981), 265–280. DOI: 10.1007/BF01762146
    • H. Triebel, Interpolation Theory, Function Spaces, Differential operators, North-Holland Math. Library 18, North-Holland Publishing Co., Amsterdam-New...
    • J. van Schaftingen, Universal approximation of symmetrizations by polarizations, Proc. Amer. Math. Soc. 134(1) (2006), 177–186. DOI: 10.1090/S0002-9939-05-08325-5
    • J. van Schaftingen and M. Willem, Set transformations, symmetrizations and isoperimetric inequalities, in: Nonlinear Analysis and Applications...
    • T. Weth, Symmetry of solutions to variational problems for nonlinear elliptic equations via reflection methods, Jahresber. Dtsch. Math.-Ver....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno