Ir al contenido

Documat


Greedy approximation algorithms for sparse collections

  • Autores: Guillermo Rey
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 68, Nº. 1, 2024, págs. 251-265
  • Idioma: inglés
  • DOI: 10.5565/PUBLMAT6812411
  • Enlaces
  • Resumen
    • We describe a greedy algorithm that approximates the Carleson constant of a collection of general sets. The approximation has a logarithmic loss in a general setting, but is optimal up to a constant with only mild geometric assumptions. The constructive nature of the algorithm givesadditional information about the almost disjoint structure of sparse collections. As applications, we give three results for collections of axis-parallel rectangles in every dimension. The first is a constructive proof of the equivalence between Carleson and sparse collections, first shown by H¨anninen. The second is a structure theorem proving that every finite collection E can be partitioned into O(N) sparse subfamilies, where N is the Carleson constant of E. We also give examples showing that such a decomposition is impossible when the geometric assumptions are dropped. The third application is a characterization of the Carleson constant involving only L1,∞ estimates.

  • Referencias bibliográficas
    • A. Barron, Sparse bounds in harmonic analysis and semiperiodic estimates, Thesis (Ph.D.)-Brown University (2019). Available on https://repository.library.brown.edu/studio/item/bdr:918918/PDF/
    • L. Carleson, A Counter Example for Neasures Bounded on Hp for the Bi-disc, Report no. 7 -1974, Institut Mittag-Leffler, 1974.
    • A. Cordoba ´ , Maximal functions, covering lemmas and Fourier multipliers, in: Harmonic Analysis in Euclidean Spaces (Proc. Sympos. Pure Math.,...
    • A. Cordoba and R. Fefferman ´ , A geometric proof of the strong maximal theorem, Ann. of Math. (2) 102(1) (1975), 95–100. DOI: 10.2307/1970976.
    • L. E. Dor, On projections in L1, Ann. of Math. (2) 102(3) (1975), 463–474. DOI: 10.2307/1971039
    • R. Fefferman, Strong differentiation with respect to measures, Amer. J. Math. 103(1) (1981), 33–40. DOI: 10.2307/2374188
    • T. S. Hanninen , Equivalence of sparse and Carleson coefficients for general sets, Ark. Mat. 56(2) (2018), 333–339. DOI: 10.4310/ARKIV.2018.v56.n2.a8
    • A. K. Lerner and F. Nazarov, Intuitive dyadic calculus: the basics, Expo. Math. 37(3) (2019), 225–265. DOI: 10.1016/j.exmath.2018.01.001
    • C. Muscalu and W. Schlag, Classical and Multilinear Harmonic Analysis. Vol. II, Cambridge Stud. Adv. Math. 138, Cambridge University Press,...
    • M. C. Pereyra, Dyadic harmonic analysis and weighted inequalities: the sparse revolution, in: New Trends in Applied Harmonic Analysis, Vol....
    • T. Tao, Dyadic product H1 , BMO, and Carleson’s counterexample, Preprint. http://www.math. ucla.edu/∼tao/preprints/harmonic.html.
    • I. E. Verbitsky, Imbedding and multiplier theorems for discrete Littlewood–Paley spaces, Pacific J. Math. 176(2) (1996), 529–556. DOI: 10.2140/PJM.1996.176.529

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno