Ir al contenido

Documat


C ⋆ -algebras of higher-rank graphs from groups acting on buildings, and explicit computation of their K-theory

  • Autores: Sam A. Mutter, Aura-Cristiana Radu, Alina Vdovina
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 68, Nº. 1, 2024, págs. 187-217
  • Idioma: inglés
  • DOI: 10.5565/PUBLMAT6812408
  • Enlaces
  • Resumen
    • We unite elements of category theory, K-theory, and geometric group theory, by defining a class of groups called k-cube groups, which act freely and transitively on the product of k trees, for arbitrary k. The quotient of this action on the product of trees defines a k-dimensional cube complex,which induces a higher-rank graph. We make deductions about the K-theory of the corresponding rank-k graph C?-algebras, and give examples of k-cube groups and their K-theory. These are among the first explicit computations of K-theory for an infinite family of rank-k graphs for k ≥ 3, which isnot a direct consequence of the K¨unneth theorem for tensor products.

  • Referencias bibliográficas
    • S. Allen, D. Pask, and A. Sims, A dual graph construction for higher-rank graphs, and K-theory for finite 2-graphs, Proc. Amer. Math. Soc....
    • W. Ballmann and M. Brin, Orbihedra of nonpositive curvature, Inst. Hautes Etudes Sci. Publ. Math. 82 (1995), 169–209. DOI: 10.1007/BF02698640.
    • M. Bridson and D. T. Wise, V H complexes, towers and subgroups of F × F, Math. Proc. Cambridge Philos. Soc. 126(3) (1999), 481–497. DOI: 10.1017/S0305004199003503.
    • H. Brown, G. Nagy, and S. Reznikoff, A generalized Cuntz–Krieger uniqueness theorem for higher-rank graphs, J. Funct. Anal. 266(4) (2014),...
    • M. Burger and S. Mozes, Finitely presented simple groups and products of trees, C. R. Acad. Sci. Paris S´er. I Math. 324(7) (1997), 747–752....
    • M. Burger and S. Mozes, Lattices in product of trees, Inst. Hautes Etudes Sci. Publ. Math. 92 (2000), 151–194. DOI: 10.1007/BF02698916.
    • J.-G. Dumas, F. Heckenbach, D. Saunders, and V. Welker, Computing simplicial homology based on efficient Smith normal form algorithms, in:...
    • D. G. Evans, On the K-theory of higher rank graph C∗-algebras, New York J. Math. 14 (2008), 1–31.
    • D. G. Evans and A. Sims, When is the Cuntz–Krieger algebra of a higher-rank graph approximately finite-dimensional?, J. Funct. Anal. 263(1)...
    • N. J. Fowler and A. Sims, Product systems over right-angled Artin semigroups, Trans. Amer. Math. Soc. 354(4) (2002), 1487–1509. DOI: 10.1090/S0002-9947-01-02911-7
    • M. Gromov, Hyperbolic groups, in: Essays in Group Theory, Math. Sci. Res. Inst. Publ. 8, Springer-Verlag, New York, 1987, pp. 75–263. DOI:...
    • R. Hazlewood, I. Raeburn, A. Sims, and S. B. G. Webster, Remarks on some fundamental results about higher-rank graphs and their C∗-algebras,...
    • O. Kharlampovich and A. Vdovina, Low complexity algorithms in knot theory, Internat. J. Algebra Comput. 29(2) (2019), 245–262. DOI: 10.1142/S0218196718500698
    • J. S. Kimberley and G. Robertson, Groups acting on products of trees, tiling systems and analytic K-theory, New York J. Math. 8 (2002), 111–131.
    • E. Kirchberg, The classification of purely infinite C*-algebras using Kasparov’s theory, Preprint (1994).
    • A. Kumjian and D. Pask, Higher rank graph C∗-algebras, New York J. Math. 6 (2000), 1–20.
    • A. Kumjian, D. Pask, and A Sims, C∗-algebras associated to coverings of k-graphs, Doc. Math. 13 (2008), 161–205. DOI: 10.4171/DM/247
    • M. V. Lawson, A. Sims, and A. Vdovina, Higher dimensional generalizations of the Thompson groups via higher rank graphs, J. Pure Appl. Algebra...
    • H. Matui, Etale groupoids arising from products of shifts of finite type, ´ Adv. Math. 303 (2016), 502–548. DOI: 10.1016/j.aim.2016.08.023
    • J. McCleary, A User’s Guide to Spectral Sequences, Second edition, Cambridge Stud. Adv. Math. 58, Cambridge University Press, Cambridge, 2001....
    • S. A. Mutter, The K-theory of the C∗-algebras of 2-rank graphs associated to complete bipartite graphs, J. Aust. Math. Soc. 113(1) (2022),...
    • N. C. Phillips, A classification theorem for nuclear purely infinite simple C∗-algebras, Doc. Math. 5 (2000), 49–114. DOI: 10.4171/dm/75
    • D. I. Robertson and A. Sims, Simplicity of C∗-algebras associated to higher-rank graphs, Bull. Lond. Math. Soc. 39(2) (2007), 337–344. DOI:...
    • G. Robertson and T. Steger, Affine buildings, tiling systems and higher rank Cuntz–Krieger algebras, J. Reine Angew. Math. 513 (1999), 115–144....
    • G. Robertson and T. Steger, Asymptotic K-theory for groups acting on A˜2 buildings, Canad. J. Math. 53(4) (2001), 809–833. DOI: 10.4153/CJM-2001-033-4
    • J. Rosenberg and C. Schochet, The K¨unneth theorem and the universal coefficient theorem for Kasparov’s generalized K-functor, Duke Math....
    • N. Rungtanapirom, J. Stix, and A. Vdovina, Infinite series of quaternionic 1-vertex cube complexes, the doubling construction, and explicit...
    • E. Scarparo, Homology of odometers, Ergodic Theory Dynam. Systems 40(9) (2020), 2541–2551. DOI: 10.1017/etds.2019.13
    • A. Vdovina, Drinfeld–Manin solutions of the Yang–Baxter equation coming from cube complexes, Internat. J. Algebra Comput. 31(4) (2021), 775–788....
    • N. E. Wegge-Olsen, K-Theory and C∗-Algebras: A Friendly Approach, Oxford Sci. Publ., The Clarendon Press, Oxford University Press, New York,...
    • D. T. Wise, Non-positively curved squared complexes: Aperiodic tilings and non-residually finite groups, Thesis (Ph.D.)-Princeton University...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno