Ir al contenido

Documat


Test vectors for archimedean period integrals

  • Autores: Peter J. Humphries, Yeongseong Jo
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 68, Nº. 1, 2024, págs. 139-185
  • Idioma: inglés
  • DOI: 10.5565/PUBLMAT6812407
  • Enlaces
  • Resumen
    • We study period integrals involving Whittaker functions associated to generic irreducible Casselman–Wallach representations of GLn(F), where F is an archimedean local field. Via the archimedean theory of newforms for GLn developed by the first author, we prove that newforms are weak test vectors for several period integrals, including the GLn × GLn Rankin–Selberg integral, the Flicker integral, and the Bump–Friedberg integral. By taking special values of these period integrals, we deduce that newforms are weak test vectors for Rankin–Selberg periods, Flicker–Rallis periods, and Friedberg–Jacquet periods. These results parallel analogous results in the nonarchimedean setting proved by the second author, which use the nonarchimedean theory of newforms for GLn developed by Jacquet, Piatetski-Shapiro, and Shalika. By combining these archimedean and nonarchimedean results, we prove the existence of weak test vectors for certain global period integrals of automorphic forms.

  • Referencias bibliográficas
    • U. K. Anandavardhanan, A. C. Kable, and R. Tandon, Distinguished representations and poles of twisted tensor L-functions, Proc. Amer. Math....
    • U. K. Anandavardhanan and N. Matringe, Test vectors for local periods, Forum Math. 29(6) (2017), 1245–1260. DOI: 10.1515/forum-2016-0169
    • K. Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit Sphere: An Introduction, Lecture Notes in Math. 2044, Springer,...
    • E. M. Baruch, A proof of Kirillov’s conjecture, Ann. of Math. (2) 158(1) (2003), 207–252. DOI: 10.4007/annals.2003.158.207
    • R. Beuzart-Plessis, Archimedean theory and -factors for the Asai Rankin–Selberg integrals, in: Relative Trace Formulas, Simons Symp. Springer,...
    • A. R. Booker, M. Krishnamurthy, and M. Lee, Test vectors for Rankin–Selberg L-functions, J. Number Theory 209 (2020), 37–48. DOI: 10.1016/j.jnt.2019.08.010
    • D. Bump, The Rankin–Selberg method: a survey, in: Number Theory, Trace Formulas and Discrete Groups (Oslo, 1987), Academic Press, Inc., Boston,...
    • D. Bump and S. Friedberg, The exterior square automorphic L-functions on GL(n), in: Festschrift in Honor of I. I. Piatetski-Shapiro on the...
    • W. Casselman, Canonical extensions of Harish–Chandra modules to representations of G, Canad. J. Math. 41(3) (1989), 385–438. DOI: 10.4153/CJM-1989-019-5
    • W. Casselman and J. Shalika, The unramified principal series of p-adic groups. II. The Whittaker function, Compositio Math. 41(2) (1980),...
    • J. W. Cogdell and I. Piatetski-Shapiro, Remarks on Rankin–Selberg convolutions, in: Contributions to Automorphic Forms, Geometry, and Number...
    • N. Duhamel, Formule de Plancherel sur GLn × GLn\GL2n, Preprint (2019). arXiv:1912.08497v1
    • B. Feigon, E. Lapid, and O. Offen, On representations distinguished by unitary groups, Publ. Math. Inst. Hautes Etudes Sci. ´ 115 (2012),...
    • Y. Z. Flicker, Twisted tensors and Euler products, Bull. Soc. Math. France 116(3) (1988), 295–313. DOI: 10.24033/bsmf.2099
    • Y. Z. Flicker, On zeroes of the twisted tensor L-function, Math. Ann. 297(2) (1993), 199–219. DOI: 10.1007/BF01459497
    • Y. Z. Flicker and D. Zinoviev, On poles of twisted tensor L-functions, Proc. Japan Acad. Ser. A Math. Sci. 71(6) (1995), 114–116. DOI: 10.3792/pjaa.71.114
    • S. Friedberg and H. Jacquet, Linear periods, J. Reine Angew. Math. 443 (1993), 91–139. DOI: 10.1515/crll.1993.443.91
    • S. Gelbart, H. Jacquet, and J. Rogawski, Generic representations for the unitary group in three variables, Israel J. Math. 126 (2001), 173–237....
    • A. Gerasimov, D. Lebedev, and S. Oblezin, Baxter operator and Archimedean Hecke algebra, Comm. Math. Phys. 284(3) (2008), 867–896. DOI: 10.1007/s00220-008-0547-9
    • R. Godement and H. Jacquet, Zeta Functions of Simple Algebras, Lecture Notes in Math. 260, Springer-Verlag, Berlin-New York, 1972. DOI: 10.1007/BFb0070263
    • M. Hirano, T. Ishii, and T. Miyazaki, Archimedean zeta integrals for GL(3) × GL(2), Mem. Amer. Math. Soc. 278(1366) (2022), 122 pp. DOI: 10.1090/memo/1366
    • R. Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2(3) (1989), 535–552. DOI: 10.2307/1990942
    • P. Humphries, Archimedean newform theory for GLn, Preprint (2020). arXiv:2008.12406v1
    • P. Humphries, The newform K-type and p-adic spherical harmonics, Preprint (2020). arXiv:2009.08571v1. To appear in Israel J. Math.
    • P. Humphries, Test vectors for non-Archimedean Godement–Jacquet zeta integrals, Bull. Lond. Math. Soc. 53(1) (2021), 92–99. DOI: 10.1112/blms.12401
    • T. Ishii, Archimedean zeta integrals for the exterior square L-functions on GLn, J. Number Theory 186 (2018), 304–345. DOI: 10.1016/j.jnt.2017.10.007
    • T. Ishii and T. Miyazaki, Calculus of archimedean Rankin–Selberg integrals with recurrence relations, Represent. Theory 26 (2022), 714–763....
    • T. Ishii and E. Stade, Archimedean zeta integrals on GLn × GLm and SO2n+1 × GLm, Manuscripta Math. 141(3-4) (2013), 485–536. DOI: 10.1007/s00229-012-0581-y
    • H. Jacquet, Automorphic Forms on GL(2). Part II, Lecture Notes in Math. 278, SpringerVerlag, Berlin-New York, 1972. DOI: 10.1007/BFb0058503
    • H. Jacquet, Archimedean Rankin–Selberg integrals, in: Automorphic Forms and L-Functions II. Local Aspects, Contemp. Math. 489, Israel Math....
    • H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Conducteur des repr´esentations du groupe lin´eaire, Math. Ann. 256(2) (1981), 199–214....
    • H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin–Selberg convolutions, Amer. J. Math. 105(2) (1983), 367–464. DOI: 10.2307/2374264
    • H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations I, Amer. J. Math. 103(3) (1981), 499–558....
    • H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms II, Amer. J. Math. 103(4) (1981), 777–815. DOI:...
    • H. Jacquet and J. Shalika, A lemma on highly ramified -factors, Math. Ann. 271(3) (1985), 319–332. DOI: 10.1007/BF01456070
    • H. Jacquet and J. Shalika, Exterior square L-functions, in: Automorphic Forms, Shimura Varieties, and L-Functions, Vol. II (Ann Arbor, MI,...
    • Y. Jo, The local period integrals and essential vectors, Math. Nachr. 296(1) (2023), 339–367. DOI: 10.1002/mana.202100392
    • A. Kemarsky, Distinguished representations of GLn(C), Israel J. Math. 207(1) (2015), 435–448. DOI: 10.1007/s11856-015-1179-3
    • A. Kemarsky, Gamma factors of distinguished representations of GLn(C), Pacific J. Math. 278(1) (2015), 137–172. DOI: 10.2140/pjm.2015.278.137
    • K.-M. Kim, Test vectors of Rankin–Selberg convolutions for general linear groups, Thesis (Ph.D.)-The Ohio State University (2010). Available...
    • A. W. Knapp, Local Langlands correspondence: the Archimedean case, in: Motives, Part 2 (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, American...
    • N. Matringe, Essential Whittaker functions for GL(n), Doc. Math. 18 (2013), 1191–1214. DOI: 10.4171/DM/425
    • N. Matringe, A specialisation of the Bump–Friedberg L-function, Canad. Math. Bull. 58(3) (2015), 580–595. DOI: 10.4153/CMB-2015-014-1
    • N. Matringe, On the local Bump–Friedberg L-function II, Manuscripta Math. 152 (1-2) (2017), 223–240. DOI: 10.1007/s00229-016-0860-0
    • M. Miyauchi, Whittaker functions associated to newforms for GL(n) over p-adic fields, J. Math. Soc. Japan 66(1) (2014), 17–24. DOI: 10.2969/jmsj/06610017
    • M. Miyauchi and T. Yamauchi, Local newforms and formal exterior square L-functions, Int. J. Number Theory 9(8) (2013), 1995–2010. DOI: 10.1142/S179304211350070X
    • T. Miyazaki, The local zeta integrals for GL(2, C)×GL(2, C), Proc. Japan Acad. Ser. A Math. Sci. 94(1) (2018), 1–6. DOI: 10.3792/pjaa.94.1
    • W. Rudin, Function Theory in the Unit Ball of Cn, Reprint of the 1980 edition, Classics Math., Springer-Verlag, Berlin, 2008. DOI: 10.1007/978-3-540-68276-9
    • Y. Sakellaridis, Spherical varieties and integral representations of L-functions, Algebra Number Theory 6(4) (2012), 611–667. DOI: 10.2140/ant.2012.6.611
    • T. Shintani, On an explicit formula for class-1 “Whittaker functions” on GLn over P-adic fields, Proc. Japan Acad. 52(4) (1976), 180–182....
    • E. Stade, Mellin transforms of Whittaker functions on GL(4, R) and GL(4, C), Manuscripta Math. 87(4) (1995), 511–526. DOI: 10.1007/BF02570491
    • E. Stade, Mellin transforms of GL(n, R) Whittaker functions, Amer. J. Math. 123(1) (2001), 121–161. DOI: 10.1353/ajm.2001.0004
    • E. Stade, Archimedean L-factors on GL(n) × GL(n) and generalized Barnes integrals, Israel J. Math. 127 (2002), 201–219. DOI: 10.1007/BF02784531
    • A. Venkatesh, Large sieve inequalities for GL(n)-forms in the conductor aspect, Adv. Math. 200(2) (2006), 336–356. DOI: 10.1016/j.aim.2005.11.001
    • N. R. Wallach, Real Reductive Groups II, Pure Appl. Math. 132-II, Academic Press, Inc., Boston, MA, 1992. DOI: 10.1016/S0079-8169(08)62831-7
    • H. Xue, Epsilon dichotomy for linear models, Algebra Number Theory 15(1) (2021), 173–215. DOI: 10.2140/ant.2021.15.173
    • Q. Zhang, A local converse theorem for Sp2r , Math. Ann. 372(1-2) (2018), 451–488. DOI: 10.1007/s00208-017-1623-2
    • S.-W. Zhang, Gross–Zagier formula for GL2, Asian J. Math. 5(2) (2001), 183–290. DOI: 10.4310/AJM.2001.v5.n2.a1
    • W. Zhang, Automorphic period and the central value of Rankin–Selberg L-function, J. Amer. Math. Soc. 27(2) (2014), 541–612. DOI: 10.1090/S0894-0347-2014-00784-0

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno