Ir al contenido

Documat


∞ -operads as symmetric monoidal ∞ -categories

  • Autores: Rune Haugseng, Joachim Kock Árbol académico
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 68, Nº. 1, 2024, págs. 111-137
  • Idioma: inglés
  • DOI: 10.5565/PUBLMAT6812406
  • Enlaces
  • Resumen
    • We use Lurie’s symmetric monoidal envelope functor to give two new descriptions of ∞-operads: as certain symmetric monoidal ∞-categories whose underlying symmetric monoidal ∞-groupoids are free, and as certain symmetric monoidal ∞-categories equipped with a symmetric monoidal functor to finite sets (with disjoint union as tensor product). The latter leads to a third description of ∞-operads, as a localization of a presheaf ∞-category, and we use this to give a simple proof of the equivalence between Lurie’s and Barwick’s models for ∞-operads.

  • Referencias bibliográficas
    • J. F. Adams, Infinite Loop Spaces, Ann. of Math. Stud. 90, Princeton University Press, Princeton, NJUniversity of Tokyo Press, Tokyo, 1978.
    • D. Ayala and J. Francis, Fibrations of ∞-categories, High. Struct. 4(1) (2020), 168–265. DOI: 10.21136/HS.2020.05
    • C. Barwick, From operator categories to higher operads, Geom. Topol. 22(4) (2018), 1893–1959. DOI: 10.2140/gt.2018.22.1893
    • M. Batanin, J. Kock, and M. Weber, Regular patterns, substitudes, Feynman categories and operads, Theory Appl. Categ. 33 (2018), Paper no....
    • M. Batanin and M. Markl, Operadic categories and duoidal Deligne’s conjecture, Adv. Math. 285 (2015), 1630–1687. DOI: 10.1016/j.aim.2015.07.008
    • J. M. Boardman and R. M. Vogt, Homotopy Invariant Algebraic Structures on Topological Spaces, Lecture Notes in Math. 347, Springer-Verlag,...
    • D. V. Borisov and Y. I. Manin, Generalized operads and their inner cohomomorphisms, in: Geometry and Dynamics of Groups and Spaces, Progr....
    • G. Caviglia, The Dwyer–Kan model structure for enriched coloured PROPs, Preprint (2015). arXiv:1510.01289
    • H. Chu and R. Haugseng, Homotopy-coherent algebra via Segal conditions, Adv. Math. 385 (2021), Paper no. 107733, 95 pp. DOI: 10.1016/j.aim.2021.107733
    • D. Gepner, R. Haugseng, and T. Nikolaus, Lax colimits and free fibrations in ∞-categories, Doc. Math. 22 (2017), 1225–1266. DOI: 10.4171/dm/593
    • P. Hackney and M. Robertson, The homotopy theory of simplicial props, Israel J. Math. 219(2) (2017), 835–902. DOI: 10.1007/s11856-017-1500-4
    • R. Haugseng, F. Hebestreit, S. Linskens, and J. Nuiten, Lax monoidal adjunctions, twovariable fibrations and the calculus of mates, Proc....
    • C. Hermida, Representable multicategories, Adv. Math. 151(2) (2000), 164–225. DOI: 10.1006/aima.1999.1877
    • V. Hinich, Dwyer–Kan localization revisited, Homology Homotopy Appl. 18(1) (2016), 27–48. DOI: 10.4310/HHA.2016.v18.n1.a3
    • V. Hinich, Yoneda lemma for enriched ∞-categories, Adv. Math. 367 (2020), 107129, 119 pp. DOI: 10.1016/j.aim.2020.107129
    • A. Joyal and M. Tierney, Quasi-categories vs Segal spaces, in: Categories in Algebra, Geometry and Mathematical Physics, Contemp. Math. 431,...
    • R. M. Kaufmann and B. C. Ward, Feynman categories, Ast´erisque 387 (2017), 161 pp.
    • G. M. Kelly, On the operads of J. P. May, Repr. Theory Appl. Categ. 13 (2005), 1–13.
    • J. Lurie, Higher Topos Theory, Ann. of Math. Stud. 170, Princeton University Press, Princeton, NJ, 2009. DOI: 10.1515/9781400830558
    • J. Lurie, Higher Algebra, 2017. Available at http://math.ias.edu/∼lurie/.
    • S. Mac Lane, Categorical algebra, Bull. Amer. Math. Soc. 71 (1965), 40–106. DOI: 10.1090/S0002-9904-1965-11234-4
    • M. Markl, Operads and PROPs, in: Handbook of Algebra, Vol. 5, Handb. Algebr. 5, Elsevier/North-Holland, Amsterdam, 2008, pp. 87–140. DOI:...
    • J. P. May, The Geometry of Iterated Loop Spaces, Lecture Notes in Math. 271, Springer-Verlag, Berlin-New York, 1972. DOI: 10.1007/BFb0067491
    • J. P. May and R. Thomason, The uniqueness of infinite loop space machines, Topology 17(3) (1978), 205–224. DOI: 10.1016/0040-9383(78)90026-5
    • P.-A. Mellies and N. Tabareau, Free models of T-algebraic theories computed as Kan extensions, Unpublished article accompanying a talk given...
    • C. Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353(3) (2001), 973–1007. DOI: 10.1090/S0002-9947-00-02653-2
    • G. Segal, Categories and cohomology theories, Topology 13(3) (1974), 293–312. DOI: 10.1016/0040-9383(74)90022-6
    • M. Weber, Operads as polynomial 2-monads, Theory Appl. Categ. 30 (2015), Paper no. 49, 1659–1712.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno