Ir al contenido

Documat


Non-existence of integral Hopf orders for twists of several simple groups of Lie type

  • Autores: Giovanna Carnovale, Juan Cuadra Díaz Árbol académico, Elisabetta Masut
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 68, Nº. 1, 2024, págs. 73-101
  • Idioma: inglés
  • DOI: 10.5565/PUBLMAT6812404
  • Enlaces
  • Resumen
    • Let p be a prime number and q = pm, with m ≥ 1 if p 6= 2, 3 and m > 1 otherwise. Let Ω be any non-trivial twist for the complex group algebra of PSL2(q) arising from a 2-cocycle on an abelian subgroup of PSL2(q). We show that the twisted Hopf algebra (CPSL2(q))Ω does not admit a Hopf order over any number ring. The same conclusion is proved for the Suzuki groups, and for SL3(p) when the twist stems from an abelian p-subgroup. This supplies new families of complex semisimple (and simple) Hopf algebras that do not admit a Hopf order over any number ring. The strategy of the proof is formulated in a general framework that includes the finite simple groups of Lie type.  As an application, we combine our results with two theorems of Thompson and Barry and Ward on minimal simple groups to establish that for any finite non-abelian simple group G there is a twist Ω for CG, arising from a 2-cocycle on an abelian subgroup of G, such that (CG)Ω does not admit a Hopf order over any number ring. This partially answers in the negative a question posed by Meir and the second author.

  • Referencias bibliográficas
    • E. Aljadeff, P. Etingof, S. Gelaki, and D. Nikshych, On twisting of finite-dimensional Hopf algebras, J. Algebra 256(2) (2002), 484–501. ...
    • M. J. J. Barry and M. B. Ward, Simple groups contain minimal simple groups, Publ. Mat. 41(2) (1997), 411–415. DOI: 10.5565/PUBLMAT_41297_07
    • N. Ben David and Y. Ginosar, On groups of central type, non-degenerate and bijective cohomology classes, Israel J. Math. 172 (2009), 317–335....
    • C. Bonnafe´, Representations of SL2(Fq), Algebr. Appl. 13, Springer-Verlag London, Ltd., London, 2011. DOI: 10.1007/978-0-85729-157-8
    • N. P. Byott, Tame and Galois extensions with respect to Hopf orders, Math. Z. 220(4) (1995), 495–522. DOI: 10.1007/BF02572628
    • N. P. Byott, Monogenic Hopf orders and associated orders of valuation rings, J. Algebra 275(2) (2004), 575–599. DOI: 10.1016/j.jalgebra.2003.07.003
    • R. W. Carter, Simple Groups of Lie Type, Reprint of the 1972 original, Wiley Classics Lib., Wiley-Intersci. Publ., John Wiley & Sons,...
    • L. N. Childs, Taming wild extensions with Hopf algebras, Trans. Amer. Math. Soc. 304(1) (1987), 111–140. DOI: 10.2307/2000707
    • L. N. Childs, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, Math. Surveys Monogr. 80, American Mathematical Society,...
    • L. Childs and D. J. Moss, Hopf algebras and local Galois module theory, in: Advances in Hopf Algebras (Chicago, IL, 1992), Lecture Notes in...
    • Cuadra and E. Meir, On the existence of orders in semisimple Hopf algebras, Trans. Amer.Math. Soc. 368(4) (2016), 2547–2562. DOI: 10.1090/tran/6380
    • J. Cuadra and E. Meir, Non-existence of Hopf orders for a twist of the alternating and symmetric groups, J. Lond. Math. Soc. (2) 100(1) (2019),...
    • C. W. Curtis and I. Reiner, Methods of Representation Theory. With Applications to Finite Groups and Orders, Vol. I, Pure and Applied Mathematics,...
    • D. Dixon and B. Mortimer, Permutation Groups, Grad. Texts in Math. 163, SpringerVerlag, New York, 1996. DOI: 10.1007/978-1-4612-0731-3
    • L. Dornhoff, Group Representation Theory. Part A: Ordinary Representation Theory, Pure and Applied Mathematics 7, Marcel Dekker, Inc., New...
    • P. Etingof and S. Gelaki, The representation theory of cotriangular semisimple Hopf algebras, Internat. Math. Res. Notices 1999(7) (1999),...
    • A. Frohlich, Galois Module Structure of Algebraic Integers, Ergeb. Math. Grenzgeb. (3) [Results in Mathematics and Related Areas (3)] 1, Springer-Verlag,...
    • Y. Ginosar and O. Schnabel, Groups of central-type, maximal connected gradings and intrinsic fundamental groups of complex semisimple algebras,...
    • C. Hoffman, On some examples of simple quantum groups, Comm. Algebra 28(4) (2000), 1867–1873. DOI: 10.1080/00927870008826931
    • B. Huppert and N. Blackburn, Finite Groups. III, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]...
    • I. M. Isaacs, Character Theory of Finite Groups, Corrected reprint of the 1976 original [Academic Press, New York; MR0460423], Dover Publications,...
    • G. James and M. Liebeck, Representations and Characters of Groups, Second edition, Cambridge University Press, New York, 2001. DOI: 10.1017/CBO9780511814532
    • G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monogr. (N.S.) 2, The Clarendon Press, Oxford University Press, New York, 1987.
    • G. Karpilovsky, Group Representations, Vol. 3, North-Holland Math. Stud. 180, NorthHolland Publishing Co., Amsterdam, 1994.
    • O. H. King, The subgroup structure of finite classical groups in terms of geometric configurations, in: Surveys in Combinatorics, 2005, London...
    • R. G. Larson, Orders in Hopf algebras, J. Algebra 22(2) (1972), 201–210. DOI: 10.1016/0021-8693(72)90140-8
    • G. Malle and D. Testerman, Linear Algebraic Groups and Finite Groups of Lie Type, Cambridge Stud. Adv. Math. 133, Cambridge University Press,...
    • S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. in Math. 82, Published for the Conference Board of the Mathematical...
    • M. V. Movshev, Twisting in group algebras of finite groups (Russian), Funktsional. Anal. i Prilozhen. 27(4) (1993), 17–23, 95; translation...
    • D. Nikshych, K0-rings and twisting of finite-dimensional semisimple Hopf algebras, Comm. Algebra 26(1) (1998), 321–342. DOI: 10.1080/00927879808826132
    • T. Ono, An identification of Suzuki groups with groups of generalized Lie type, Ann. of Math. (2) 75(2) (1962), 251–259. DOI: 10.2307/1970173
    • T. Ono, Correction to “An identification of Suzuki groups with groups of generalized Lie type”, Ann. of Math. (2) 77(2) (1963), 413. DOI:...
    • D. E. Radford, Hopf Algebras, Ser. Knots Everything 49, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. DOI: 10.1142/8055
    • M. Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75(1) (1962), 105–145. DOI: 10.2307/1970423
    • M. Suzuki, A characterization of the simple groups PSL(2, q), J. Math. Soc. Japan 20(1-2) (1968), 342–349. DOI: 10.2969/jmsj/02010342
    • M. Suzuki, Group Theory I, Translated from the Japanese by the author, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles...
    • M. J. Taylor, Hopf structure and the Kummer theory of formal groups, J. Reine Angew. Math. 375/376 (1987), 1–11. DOI: 10.1515/crll.1987.375-376.1
    • M. J. Taylor, Hopf orders and Galois module structure, in: Group Rings and Class Groups, With contributions by N. P. Byott, DMV Sem. 18, Birkhauser...
    • K. B. Tchakerian, The maximal subgroups of the Tits simple group, Pliska Stud. Math. Bulgar. 8 (1986), 85–93.
    • J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383–437. DOI: 10.1090/S0002-9904-1968-11953-6
    • R. G. Underwood, An Introduction to Hopf Algebras, Springer, New York, 2011. DOI: 10.1007/ 978-0-387-72766-0.
    • R. A. Wilson, The geometry and maximal subgroups of the simple groups of A. Rudvalis and J. Tits, Proc. London Math. Soc. (3) 48(3) (1984),...
    • R. A. Wilson, The Finite Simple Groups, Grad. Texts in Math. 251, Springer-Verlag London, Ltd., London, 2009. DOI: 10.1007/978-1-84800-988-2
    • R. A. Wilson, Maximal subgroups of sporadic groups, in: Finite Simple Groups: Thirty Years of the Atlas and Beyond, Contemp. Math. 694, American...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno