Ir al contenido

Documat


Dynamic grouping of vehicle trajectories

  • Gary Reyes [1] ; Laura Lanzarini [2] Árbol académico ; Cesar Estrebou [2] ; Aurelio Fernandez Bariviera [3] Árbol académico
    1. [1] Universidad de Guayaquil

      Universidad de Guayaquil

      Guayaquil, Ecuador

    2. [2] Universidad Nacional de La Plata

      Universidad Nacional de La Plata

      Argentina

    3. [3] Universitat Rovira i Virgili

      Universitat Rovira i Virgili

      Tarragona, España

  • Localización: Journal of Computer Science and Technology, ISSN-e 1666-6038, Vol. 22, Nº. 2, 2022
  • Idioma: inglés
  • DOI: 10.24215/16666038.22.e11
  • Enlaces
  • Resumen
    • español

      El volumen de tráfico vehicular de las grandes ciudades se ha incrementado en los últimos años originando problemas de movilidad, por ello el análisis de los datos del flujo vehicular toma importancia para los investigadores. Los Sistemas Inteligentes de transportación realizan el monitoreo y control vehicular recolectando trayectorias GPS, información que brinda en tiempo real la ubicación geográfica de los vehículos. Su procesamiento por medio de técnicas de agrupamiento permite identificar patrones sobre el flujo vehicular. Este trabajo presenta una metodología capaz de analizar el flujo vehicular en un área dada, identificando los rangos de velocidades y manteniendo actualizado un mapa interactivo que facilita la identificación de zonas de posibles atascos. Los resultados obtenidos sobre tres conjuntos de datos de las ciudades de Guayaquil-Ecuador, Roma-Italia y Beijing-China son satisfactorios y representan claramente la velocidad de desplazamiento de los vehículos identificando de manera automática los rangos más representativos para cada instante de tiempo.

    • English

      Vehicular traffic volume in large cities has increased in recent years, causing mobility problems; therefore, the analysis of vehicle flow data becomes a relevant research topic. Intelligent Transportation Systems monitor and control vehicular movements by collecting GPS trajectories, which provides the geographic location of vehicles in real time. Thus information is processed using clustering techniques to identify vehicular flow patterns. This work presents a methodology capable of analyzing the vehicular flow in a given area, identifying speed ranges and keeping an interactive map updated that facilitates the identification of possible traffic jam areas. The results obtained on three data sets from the cities of Guayaquil-Ecuador, RomeItaly and Beijing-China are satisfactory and clearly represent the speed of movement of the vehicles, automatically identifying the most representative ranges in real time.

  • Referencias bibliográficas
    • A. Jain, “Data clustering: 50 years beyond k-means. 2009,” Pattern Recognition Letters, 2009.
    • T. S. Madhulatha, “An overview on clustering methods,” arXiv preprint arXiv:1205.1117, 2012.
    • B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, “Scalable k-means++,” 2012.
    • H. F. Tork, “Spatio-temporal clustering methods classification,” in Doctoral Symposium on Informatics Engineering, vol. 1, pp. 199 209, Faculdade...
    • J. Han, M. Kamber, and A. K. Tung, “Spatial clustering methods in data mining,” Geographic data mining and knowledge discovery, pp. 188–217,...
    • B. M. Varghese, A. Unnikrishnan, and K. Jacob, “Spatial clustering algorithms-an overview,” Asian Journal of Computer Science and Information...
    • J. D. Mazimpaka and S. Timpf, “Trajectory data mining: A review of methods and applications,” Journal of Spatial Information Science, vol....
    • M. Y. Choong, R. K. Y. Chin, K. B. Yeo, and K. T. K. Teo, “Trajectory pattern mining via clustering based on similarity function for transportation...
    • J. Kim and H. S. Mahmassani, “Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories,” Transportation...
    • J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering: a partition-and-group framework,” in Proceedings of the 2007 ACM SIGMOD international...
    • Y. Mao, H. Zhong, H. Qi, P. Ping, and X. Li, “An adaptive trajectory clustering method based on grid and density in mobile pattern analysis,”...
    • G. Yuan, P. Sun, J. Zhao, D. Li, and C. Wang, “A review of moving object trajectory clustering algorithms,” Artificial Intelligence Review,...
    • L. X. Liu, J. T. Song, B. Guan, Z. X. Wu, and K. J. He, “Tra-dbscan: A algorithm of clustering trajectories,” in Frontiers of Manufacturing...
    • M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm for discovering clusters in large spatial databases with noise.,”...
    • G. Reyes-Zambrano, L. Lanzarini, W. Hasperue, and ´ A. F. Bariviera, “GPS trajectory clustering method for decision making on intelligent...
    • Q. Yu, Y. Luo, C. Chen, and S. Chen, “Trajectory similarity clustering based on multi-feature distance measurement,” Applied Intelligence,...
    • T. Luo, X. Zheng, G. Xu, K. Fu, and W. Ren, “An improved dbscan algorithm to detect stops in individual trajectories,” ISPRS International...
    • N. Ferreira, J. T. Klosowski, C. Scheidegger, and C. Silva, “Vector field k-means: Clustering trajectories by fitting multiple vector fields,”...
    • H. Hu, G. Lee, J. H. Kim, and H. Shin, “Estimating Micro-Level On-Road Vehicle Emissions Using the KMeans Clustering Method with GPS Big Data,”...
    • J. Lou and A. Cheng, “Behavior from Vehicle GPS / GNSS Data,” Sensors, 2020.
    • B. Babcock and J. Widom, “Models and Issues in Data Stream Systems.” 2002.
    • M. Garofalakis, J. Gehrke, and R. Rastogi, Data Stream Management. 2016.
    • M. R. Ackermann, C. Lammersen, C. Sohler, K. Swierkot, and C. Raupach, “StreamKM++: A clustering Algorithm for Data Streams,” ACM...
    • C. C. Aggarwal, Data Streams : An Overview and Scientific Applications. 2010.
    • N. Barbosa Roa, L. Trave-Massuy ´ es, and V. H. ` Grisales-Palacio, “Dyclee: Dynamic clustering for tracking evolving environments,” Pattern...
    • C. C. Aggarwal, P. S. Yu, J. Han, and J. Wang, “- a framework for clustering evolving data streams,” in Proceedings 2003 VLDB Conference (J.-C....
    • G. Reyes, L. Lanzarini, C. Estrebou, and V. Maquilon, ´ CACIC 2021 XXVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION, vol. XXVII, p....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno