Ir al contenido

Documat


VISUEL - A Web Dynamic Dashboard for DataVisualization

  • Antonini, Antonella Soledad [1] ; Ganuza, María Luján [1] ; Castro, Silvia Mabel [1]
    1. [1] ICIC- Institute of Computer Science & Engineering, UNS-CONICET
  • Localización: Journal of Computer Science and Technology, ISSN-e 1666-6038, Vol. 22, Nº. 1, 2022 (Ejemplar dedicado a: Fifty-Fifth Issue; e07)
  • Idioma: inglés
  • DOI: 10.24215/16666038.22.e03
  • Títulos paralelos:
    • VISUEL - Un Tablero Dinámico Web para la Visualización de Datos
  • Enlaces
  • Resumen
    • español

      La visualización de datos tiene como objetivo explorar y analizar los datos de forma rápida, interactiva e intuitiva mediante representaciones visuales. Ante el constante crecimiento de los datos en términos de volúmen y diversidad, las técnicas de visualización deben afrontar el desaf´ıo de lidiar con conjuntos de datos cada vez mas grandes en términos de representación, interacción y desempeño. Por lo tanto, estas técnicas deben ser capaces de transmitir de manera efectiva las caracter´ısticas del espacio de información e inspirar el descubrimiento.

      En este artículo, presentamos VISUEL, un tablero web dinámico para la visualización de datos. VISUEL admite múltiples vistas coordinadas, integrando técnicas de visualización como diagramas de dispersión, coordenadas paralelas, diagramas de caja, y mapas esquemáticos interactivos para representar información enriquecida con referencias espaciales.

      VISUEL es totalmente interactivo y admite interacciones tradicionales como filtrado, selección, brushing and linking, y zoom, entre otras. También permite al usuario configurar la representacion visual de sus datos, seleccionando el color y la forma de las representaciones.

      Ilustramos la utilidad de esta herramienta utilizando datos reales relacionados con la industria del vino en Argentina. Mostramos cómo se descubren aspectos importantes de nuestro caso de estudio mediante la construcción y el análisis de múltiples vistas.

    • English

      Data visualization aims to explore and analyze data quickly, interactively, and intuitively using visual representations. Faced with the constant growth of data in terms of volume and diversity, visualization techniques must confront the challenge of dealing with increasingly large datasets in terms of representation, interaction, and performance. Therefore, these techniques must be able to effectively convey the characteristics of the information space and inspire discovery.In this article, we present VISUEL, a web dynamic dashboard for data visualization. VISUEL supports multiple coordinated views, integrating visualization techniques such as scatter plots, parallel coordinates, and box plots, and interactive schematic maps to represent information enriched with spatial references.VISUEL is fully interactive, supporting traditional interactions like filtering, selection, brushing and linking, and zooming, among others. It also allows the user to configure the visual representation of their data, by selecting the color and shape of the representations.We illustrate the usefulness of this tool using real-life data related to the wine industry in Argentina. Important aspects of our case study are discovered through the construction and analysis of multiple views.

  • Referencias bibliográficas
    • S. T. Card, J. D. Mackinlay, and B. Scheiderman, Readings in Information Visualization, using vision to think. San Francisco: Morgan Kaufmann,...
    • M. Scherr, “Multiple and coordinated views in information visualization,” Trends in information visualization, vol. 38, pp. 1–33, 2008.
    • S. Wozny, “Web based data visualization solutions in quality assurance.” Available at: https://eestec.net/media/it-team/wozny15.pdf, september...
    • F. Mwalongo, M. Krone, G. Reina, and T. Ertl, “Stateof-the-art report in web-based visualization,” Computer graphics forum, vol. 35, no. 3,...
    • P. Pop, “Comparing web applications with desktop applications: An empirical study,” Link¨oping University, Link¨oping, 2002.
    • T. Munzner, Visualization analysis and design. CRC press, 2014.
    • C. Tominski and H. Schumann, Interactive Visual Data Analysis. CRC Press, 2020.
    • S. Few, Information dashboard design: The effective visual communication of data, vol. 2. O’Reilly Sebastopol, CA, 2006.
    • S. Wexler, J. Shaffer, and A. Cotgreave, The big book of dashboards: visualizing your data using real-world business scenarios. John Wiley...
    • M. Lawrence, E.-K. Lee, D. Cook, H. Hofmann, and E. Wurtele, “explorase: Exploratory data analysis of systems biology data,” in Fourth International...
    • M. Rautenhaus, M. B¨ottinger, S. Siemen, R. Hoffman, R. M. Kirby, M. Mirzargar, N. R¨ober, and R. Westermann, “Visualization in meteorology—a...
    • M. L. Ganuza, S. M. Castro, G. Ferracutti, E. A. Bjerg, and S. R. Martig, “Spinelviz: An interactive 3d application for visualizing spinel...
    • M. L. Ganuza, G. Ferracutti, M. F. Gargiulo, S. M. Castro, E. Bjerg, E. Gr¨oller, and K. Matkovi´c, “The spinel explorer—interactive visual...
    • A. S. Antonini, M. L. Ganuza, G. Ferracutti, M. F. Gargiulo, K. Matkovi´c, E. Gr¨oller, E. A. Bjerg, and S. M. Castro, “Spinel web: an interactive...
    • “Business dashboards: Data at a glance.” Available at: https://www.tableau.com/solutions/topic/business-dashboards/. Accessed on 2021-03-25.
    • “Zoho reviews — technologyadvice.” Available at: http://technologyadvice.com/products/zoho-reviews/. Accessed on 2021-03-25.
    • “Google analytics.” Available at: https://analytics.google.com/analytics/web/. Accessed on 2021-04-12.
    • C. North and B. Shneiderman, “Snap-together visualization: A user interface for coordinating visualizations via relational schemata (2000),”...
    • “Sas visual analytics — sas.” Available at: https://www.sas.com/en_us/software/visual-analytics.html/. Accessed on 2021-03-25.
    • “Microsoft power bi.” Available at: https://powerbi.microsoft.com/. Accessed on 2021-04-16.
    • “Sisense reviews — technologyadvice.” Available at: http://technologyadvice.com/products/sisense-review/. Accessed on 2021-03-25.
    • F. Anderson, “Getting started tutorial for ibm watson analytics,” IBM Corp, New York, 2012.
    • “Qlik view.” Available at: https://www.qlik.com/us/. Accessed on 2021-04-16.
    • “Scimago graphica.” Available at: http://graphica.app/. Accessed on 2021-09-16.
    • “Chartblocks.” Available at: http://www.chartblocks.com/en/. Accessed on 2021-04-19.
    • “Infogram.” Available at: https://infogr.am/. Accessed on 2021-04-19.
    • C. North and B. Shneiderman, “Snap-together visualization: Coordinating multiple views to explore information,” tech. rep., HCIL, Inst.for...
    • C. North and B. Shneiderman, “Snap-together visualization: can users construct and operate coordinated visualizations?,” International Journal...
    • C. Ahlberg, “Spotfire: an information exploration environment,” ACM SIGMOD Record, vol. 25, no. 4, pp. 25–29, 1996.
    • K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand, J. Mackinlay, B. Howe, and J. Heer, “Voyager 2: Augmenting visual analysis...
    • R. High, “The era of cognitive systems: An inside look at ibm watson and how it works,” IBM Corporation, Redbooks, vol. 1, p. 16, 2012.
    • R. L. Sallam, J. Tapadinhas, J. Parenteau, D. Yuen, and B. Hostmann, “Magic quadrant for business intelligence and analytics platforms,” Gartner...
    • Z. Cui, S. K. Badam, M. A. Yalc¸in, and N. Elmqvist, “Datasite: Proactive visual data exploration with computation of insight-based recommendations,”...
    • T. Kraska, “Northstar: An interactive data science system,”Proceedings of the VLDB Endowment, vol. 11, no. 12, pp. 2150–2164, 2018.
    • C¸ . Demiralp, P. J. Haas, S. Parthasarathy, and T. Pedapati, “Foresight: Rapid data exploration through guideposts,” arXiv preprint arXiv:1709.10513,...
    • M. A. Yalc¸ın, N. Elmqvist, and B. B. Bederson, “Keshif: Rapid and expressive tabular data exploration for novices,” IEEE Transactions on...
    • A. Srinivasan, S. M. Drucker, A. Endert, and J. Stasko, “Augmenting visualizations with interactive data facts to facilitate interpretation...
    • M. El-Hindi, Z. Zhao, C. Binnig, and T. Kraska, “Vistrees: fast indexes for interactive data exploration,” in Proceedings of theWorkshop on...
    • B. Yu and C. T. Silva, “Visflow-web-based visualization framework for tabular data with a subset flow model,” IEEE Transactions on Visualization...
    • P. Koytek, C. Perin, J. Vermeulen, E. Andr´e, and S. Carpendale, “Mybrush: Brushing and linking with personal agency,” IEEE Transactions on...
    • E. Zgraggen, R. Zeleznik, and S. M. Drucker, “Panoramicdata: Data analysis through pen & touch,” IEEE Transactions on Visualization and...
    • D. Ren, T. H¨ollerer, and X. Yuan, “ivisdesigner: Expressive interactive design of information visualizations,” IEEE Transactions on Visualization...
    • W. S. Cleveland and R. McGill, “The many faces of a scatterplot,” Journal of the American Statistical Association, vol. 79, no. 388, pp. 807–822,...
    • R. A. Becker and W. S. Cleveland, “Brushing scatterplots,” Technometrics, vol. 29, no. 2, pp. 127–142, 1987.
    • D. I. Benn and C. K. Ballantyne, “The description and representation of particle shape,” Earth Surface Processes and Landforms, vol. 18, no....
    • G. B. Sidder, “Petro. calc. plot, microsoft excel macros to aid petrologic interpretation,” Computers & Geosciences, vol. 20, no. 6, pp....
    • M. L. Ganuza, G. Ferracutti, F. Gargiulo, S. Castro, E. A. Bjerg, E. Gr¨oller, and K. Matkovi´c, “Interactive visual categorization of spinel-group...
    • D. Gozdowski, D. Sas, J. Rozbicki,W. Madry, J. Golba, M. Piechocinski, L. Kurzynska, M. Studnicki, and A. Derejko, “Visualizing diversity...
    • M. Kozak et al., “Visualizing adaptation of genotypes with a ternary plot,” Chil. J. Agric. Res, vol. 70, no. 4, pp. 596–603, 2010.
    • J. W. Tukey et al., Exploratory data analysis, vol. 2. Reading, Mass., 1977.
    • A. Inselberg and B. Dimsdale, “Parallel coordinates: a tool for visualizing multi-dimensional geometry,” in Proceedings of the First IEEE...
    • A. Inselberg, “A survey of parallel coordinates,” in Mathematical Visualization, pp. 167–179, Springer, 1998.
    • B. Kovalerchuk, “Visualization of multidimensional data with collocated paired coordinates and general line coordinates,” in Visualization...
    • B. Kovalerchuk, Visual knowledge discovery and machine learning, vol. 144. Springer, 2018.
    • B. Kovalerchuk and V. Grishin, “Adjustable general line coordinates for visual knowledge discovery in nd data,” Information Visualization,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno