Ir al contenido

Documat


Existence of Periodic Solutions for a Class of Dynamic Equations with Multiple Time Varying Delays on Time Scales

  • Divya Agrawal [1] ; Syed Abbas [1]
    1. [1] Indian Institute of Technology Mandi
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 1, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This manuscript considers general coupled dynamic equations on time scales with multiple and time-varying delays. The considered equations describe several continuous and discrete models as special cases. Using the coincidence degree theory approach, we investigate the existence of periodic solutions. The particular case describes the mathematical model of interacting phytoplankton when both species produce a chemical that is toxin to each other. The presented results extend and complement the existing results. Finally, some examples are presented to illustrate the analytical results.

  • Referencias bibliográficas
    • 1. Abbas, S., Banerjee, M., Hungerbühler, N.: Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model....
    • 2. Abbas, S., Sen, M., Banerjee, M.: Almost periodic solution of a non-autonomous model of phytoplankton allelopathy. Nonlinear Dyn. 67, 203–214...
    • 3. Ahmad, S., Lazer, A.C.: Average conditions for global asymptotic stability in a nonautonomous Lotka– Volterra system. Nonlinear Anal. 40,...
    • 4. Ahmad, S.: On the nonautonomous Volterra–Lotka competition equations. Proc. Am. Math. Soc. 117, 199–204 (1993)
    • 5. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhauser, Boston (2001)
    • 6. Carstensen, J., Klais, R., Cloern, J.E.: Phytoplankton blooms in estuarine and coastal waters: seasonal patterns and key species. Estuar....
    • 7. Chakraborty, S., Chatterjee, S., Venturino, E., Chattopadhyay, J.: Recurring plankton bloom dynamics modeled via toxin-producing phytoplankton....
    • 8. Chattophadyay, J.: Effect of toxic substances on a two species competitive system. Ecol. Model. 84, 287–289 (1996)
    • 9. Chen, F., Li, Z., Chen, X., Laitochová, J.: Dynamic behaviors of a delay differential equation model of plankton allelopathy. J. Comput....
    • 10. Doveri, F., Scheffer, M., Rinaldi, S., Muratori, S., Kuznetsov, Y.: Seasonality and chaos in a planktonfish model. Theor. Popul. Biol....
    • 11. Fan, M., Wang, K.: Periodic solutions of a discrete time nonautonomous ratio-dependent predator–prey system Math. Comput. Model. 35, 951–961...
    • 12. Gaines, R.E., Mawhin, J.L.: Coincidence Degree and Nonlinear Differential Equations, vol. 568. Springer, Berlin (1977)
    • 13. Gao, M., Shi, H., Li, Z.: Chaos in a seasonally and periodically forced phytoplankton–zooplankton system. Nonlinear Anal. Real World Appl....
    • 14. Hilger, S.: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results Math. 18(1), 18–56 (1990)
    • 15. Huppert, A., Blasius, B., Olinky, R., Stone, L.: A model for seasonal phytoplankton blooms. J. Theor. Biol. 236, 276–290 (2005)
    • 16. Jiang, D., Agarwal, R.P.: Existence of positive periodic solutions for a class of difference equations with several deviating arguments....
    • 17. Jiang, D., O’regan, D., Agarwal, R.P.: Optimal existence theory for single and multiple positive periodic solutions to functional difference...
    • 18. Kaufmann, E.R., Raffoul, Y.N.: Periodic solutions for a neutral nonlinear dynamical equation on a time scale. J. Math. Anal. Appl. 319(1),...
    • 19. Khan, A.Q., Javaid, M.B.: Discrete-time phytoplankton–zooplankton model with bifurcations and chaos. Adv. Differ. Equ. 2021, 415 (2021)
    • 20. Mandal, P.S., Abbas, S., Banerjee, M.: A comparative study of deterministic and stochastic dynamics for a non-autonomous allelopathic...
    • 21. Mukhopadhyay, A., Chattophadyay, J., Tapasawi, P.K.: A delay differential equation model of plankton allelopathy. Math. Biosci. 149, 167–189...
    • 22. Pelen, N.N.: Stability analysis of the periodic solutions of some kinds of predator–prey dynamical systems. J. Math. (2016). https://doi.org/10.1155/2016/7308609
    • 23. Pelen, N.N., Koksal, M.E.: Necessary and sufficient conditions for the existence of periodic solutions in a predator-prey model. Electron....
    • 24. Pelen, N.N., Güvenilir, A.F., Kaymakçalan, B.: Necessary and sufficient condition for existence of periodic solutions of predator–prey...
    • 25. Roberts, J.A., Kavallaris, N.I., Rowntree, A.P.: A discrete mutualism model: analysis and exploration of a financial application. Appl....
    • 26. Smith, J.M.: Mathematical Models in Biology. Cambridge University Press, Cambridge (1968)
    • 27. Turchin, P.: Complex Population Dynamics: A Theoretical/Empirical Synthesis. Princeton University Press, Princeton (2003)
    • 28. Xia, Y.H., Gu, X., Wong, P.J., Abbas, S.: Application of Mawhin’s coincidence degree and matrix spectral theory to a delayed system. In:...
    • 29. Zhao, Y., Yuan, S., Zhang, T.: Stochastic periodic solution of a non-autonomous toxic-producing phytoplankton allelopathy model with environmental...
    • 30. Zhang, J., Fan, M., Zhu, H.: Periodic solution of single population models on time scales. Math. Comput. Model. 52, 515–21 (2010)
    • 31. Zhang, T., Xiong, L.: Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative. Appl....
    • 32. Zhang, T., Li, Y.: Exponential Euler scheme of multi-delay Caputo–Fabrizio fractional-order differential equations. Appl. Math. Lett....
    • 33. Zhang, T., Liu, Y., Qu, H.: Global mean-square exponential stability and random periodicity of discrete-time stochastic inertial neural...
    • 34. Zhen, J., Ma, Z.: Periodic solutions for delay differential equations model of plankton allelopathy. Comput. Math. Appl. 44, 491–500 (2002)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno