Ir al contenido

Documat


Dynamic Stability of the Kawahara Equation Under the Effect of a Boundary Finite Memory

  • Roberto de A. Capistrano-Filho [1] ; Boumediène Chentouf [2] ; Isadora Maria de Jesus [3]
    1. [1] Universidade Federal de Pernambuco
    2. [2] Kuwait University
    3. [3] Universidade Federal de Pernambuco (UFPE) & Universidade Federal de Alagoas (UFAL)
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 1, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this work, we are interested in a detailed qualitative analysis of the Kawahara equation, which models numerous physical phenomena such as magneto-acoustic waves in a cold plasma and gravity waves on the surface of a heavy liquid. First, we design a feedback control law, which combines a damping component and another one of finite memory type. Then, we are capable of proving that the problem is wellposed under a condition involving the feedback gains of the boundary control and the memory kernel. Afterward, it is shown that the energy associated with this system exponentially decays by employing two different methods: the first one utilises the Lyapunov function and the second one uses a compactness–uniqueness argument which reduces the problem to prove an observability inequality.

  • Referencias bibliográficas
    • 1. Alvarez-Samaniego, B., Lannes, D.: Large time existence for 3D water-waves and asymptotics. Invent. Math. 171, 485–541 (2008)
    • 2. Amendola, G., Fabrizio, M., Golden, J.M.: Thermodynamics of Materials with Memory: Theory and Applications. Springer, New York (2012)
    • 3. Araruna, F.D., Capistrano-Filho, R.A., Doronin, G.G.: Energy decay for the modified Kawahara equation posed in a bounded domain. J. Math....
    • 4. Berloff, N., Howard, L.: Solitary and periodic solutions of nonlinear nonintegrable equations. Stud. Appl. Math. 99(1), 1–24 (1997)
    • 5. Biswas, A.: Solitary wave solution for the generalized Kawahara equation. Appl. Math. Lett. 22, 208–210 (2009)
    • 6. Bona, J.L., Lannes, D., Saut, J.-C.: Asymptotic models for internal waves. J. Math. Pures Appl. 9(89), 538–566 (2008)
    • 7. Boyd, J.P.: Weakly non-local solitons for capillary-gravity waves: fifth-degree Korteweg-de Vries equation. Phys. D 48, 129–146 (1991)
    • 8. Capistrano-Filho, R.A., Chentouf, B., de Sousa, L.S.: Two stability results for the Kawahara equation with a time-delayed boundary control....
    • 9. Capistrano-Filho, R.A., de Jesus, I.M.: Massera’s theorems for a higher order dispersive system. Acta Applicandae Mathematicae 185(5),...
    • 10. Capistrano-Filho, R.A., Gonzalez Martinez, V.H.: Stabilization results for delayed fifth-order KdV-type equation in a bounded domain....
    • 11. Capistrano-Filho, R.A., de Sousa, L.S.: Control results with overdetermination condition for higher order dispersive system. J. Math....
    • 12. Chentouf, B.: Qualitative analysis of the dynamic for the nonlinear Korteweg-de Vries equation with a boundary memory. Qual. Theory Dyn....
    • 13. Chentouf, B.: On the exponential stability of a nonlinear Kuramoto-Sivashinsky-Korteweg-de Vries equation with finite memory. Mediterr....
    • 14. Chentouf, B.: Well-posedness and exponential stability of the Kawahara equation with a time-delayed localized damping. Math. Methods Appl....
    • 15. Cui, S.B., Deng, D.G., Tao, S.P.: Global existence of solutions for the Cauchy problem of the Kawahara equation with L2 initial data....
    • 16. Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37, 297–308 (1970)
    • 17. Hasimoto, H.: Water waves. Kagaku 40, 401–408 (1970); (Japanese)
    • 18. Hunter, J.K., Scheurle, J.: Existence of perturbed solitary wave solutions to a model equation for water waves. Phys. D 32, 253–268 (1998)
    • 19. Iguchi, T.: A long wave approximation for capillary-gravity waves and the Kawahara Equations. Acad. Sin. New Ser. 2(2), 179–220 (2007)
    • 20. Jin, L.: Application of variational iteration method and homotopy perturbation method to the modified Kawahara equation. Math. Comput....
    • 21. Kaya, D., Al-Khaled, K.: A numerical comparison of a Kawahara equation. Phys. Lett. A 363(5–6), 433–439 (2007)
    • 22. Kawahara, T.: Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 33, 260–264 (1972)
    • 23. Kakutani, T.: Axially symmetric stagnation-point flow of an electrically conducting fluid under transverse magnetic field. J. Phys. Soc....
    • 24. Lannes, D.: The Water Waves Problem. Mathematical Analysis and Asymptotics. Mathematical Surveys and Monographs, vol. 188. American Mathematical...
    • 25. Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks....
    • 26. Nicaise, S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed memory. Differ. Integr. Equ. 21, 935–958...
    • 27. Polat, N., Kaya, D., Tutalar, H.I.: An analytic and numerical solution to a modified Kawahara equation and a convergence analysis of the...
    • 28. Pomeau, Y., Ramani, A., Grammaticos, B.: Structural stability of the Korteweg-de Vries solitons under a singular perturbation. Phys. D...
    • 29. Rosier, L.: Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM Control Optim. Calc. Var. 2,...
    • 30. Vasconcellos, C.F., Silva, P.N.: Stabilization of the linear Kawahara equation with localized damping. Asympt. Anal. 58, 229–252 (2008)
    • 31. Vasconcellos, C.F., Silva, P.N.: Stabilization of the linear Kawahara equation with localized damping. Asympt. Anal. 66, 119–124 (2010)
    • 32. Xu, G.Q., Yung, S.P., Li, L.K.: Stabilization of wave systems with input delay in the boundary control. ESAIM Control Optim. Calc. Var....
    • 33. Yusufoglu, E., Bekir, A., Alp, M.: Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine-Cosine...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno