Ir al contenido

Documat


Stability analysis of a fractional virotherapy model for cancer treatment

  • Robinson Tavoni [2] ; Mancera, Paulo F. A. [1] ; Camargo, Rubens F. [1]
    1. [1] Universidade Estadual Paulista

      Universidade Estadual Paulista

      Brasil

    2. [2] Instituto Federal de São Paulo
  • Localización: Revista Colombiana de Matemáticas, ISSN-e 0034-7426, Vol. 55, Nº. 2, 2021, págs. 177-196
  • Idioma: inglés
  • DOI: 10.15446/recolma.v55n2.102677
  • Títulos paralelos:
    • Análisis de estabilidad de un modelo fraccionario para el tratamiento de cáncer
  • Enlaces
  • Resumen
    • español

      Este artículo presenta un análisis de estabilidad de un modelo de ecuaciones diferenciales ordinarias para el tratamiento de cáncer usando virus oncológicos siendo consideradas las versiones clásica y fraccionaria. Usando diferentes valores para el orden de la derivada fraccionaria de Caputo, se presentan y discuten tres escenarios para tal tratamiento.

    • English

      This paper presents a stability analysis of a differential equations model related to the cancer treatment with an oncolytic virus in its classical and fractional version via Caputo derivatives. Numerical simulations of three possible scenarios are presented and support the discussions on the advantages of using fractional modeling.

  • Referencias bibliográficas
    • N. Ahmed, N. A. Shah, S. Taherifar, and F. D. Zaman, Memory effects and of the killing rate on the tumor cells concentration for a one-dimensional...
    • R. Almeida, Analysis of a fractional SEIR model with treatment, Appl. Math. Lett. 84 (2018), 56-62. DOI: https://doi.org/10.1016/j.aml.2018.04.015
    • A. Arafa, I. Hanafy, and M. Gouda, Stability analysis of fractional order hiv infection of CD4+ T cells with numerical solutions, Fract....
    • Y. Bai, P. Hui, X. Du, and X. Su, Updates to the antitumor mechanism of oncolytic virus, Theor. Cancer 10 (2019), no. 5, 1031-1035. DOI: https://doi.org/10.1111/1759-7714.13043
    • L. C. Cardoso, F. L. P. Santos, and R. F. Camargo, Analysis of fractional-order models for hepatitis B, Comput. Appl. Math. 37 (2018), no....
    • A. C. Chamgoué, G. S. M. Ngueuteu, R. Yamapi, and P. Woafo, Memory effect in a self-sustained birhythmic biological system, Chaos Soliton....
    • E. Costanzi-Strauss and B. E. Strauss, Perspectives of gene therapy, Rev. Med. 94 (2015), no. 4, 211-222. DOI: https://doi.org/10.11606/issn.1679-9836.v94i4p211-222
    • L. Edelstein-Keshet, Mathematical models in biology, SIAM, 2004. DOI: https://doi.org/10.1137/1.9780898719147
    • I. R. Eissa, Y. Naoe, I. Bustos-Villalobos, T. Ichinose, M. Tanaka, W. Zhiwen, N. Mukoyama, T. Morimoto, N. Miyajima, H. Hitoki, et al., Genomic...
    • A. M. Elaiw and A. D. Al Agha, Analysis of a delayed and diffusive oncolytic M1 virotherapy model with immune response, Nonlinear Anal. Real...
    • M. F. Farayola, S. S. Shafie, F. M. Siam, and I. Khan, Mathematical modeling of radiotherapy cancer treatment using Caputo fractional derivative,...
    • A. Friedman and X. Lai, Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: a mathematical model, PloS One 13 (2018),...
    • H. Fukuhara, Y. Ino, and T. Todo, Oncolytic virus therapy: a new era of cancer treatment at dawn, Cancer Sci. 107 (2016), no. 10, 1373-1379....
    • R. A. Gatenby and T. L. Vincent, Application of quantitative models from population biology and evolutionary game theory to tumor therapeutic...
    • B. Ghanbari, S. Kumar, and R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional...
    • J. F. Gómes-Aguilar, H. Yépes-Martínez, C. Calderón- Ramón, I. Cruz-Orduña, R. F. Escobar-Jiménez, and V. H. Olivares-Peregrino, Modeling...
    • J. P. W. Heidbuechel, D. Abate-Daga, C. E. Engeland, and H. Enderling, Mathematical modeling of oncolytic virotherapy, Springer, 2020. DOI:...
    • A. L. Jenner, A. C. F. Coster, P. S. Kim, and F. Frascoli, Treating cancerous cells with viruses: insights from a minimal model for oncolytic...
    • A. L. Jenner, C. O. Yun, P. S. Kim, and A. C. F. Coster, Mathematical modelling of the interaction between cancer cells and an oncolytic virus:...
    • C. Kaid, E. Goulart, L. C. Caires-Júnior, B. H. S. Araujo, A. Soares-Schanoski, H. M. S. Bueno, K. A. T. Silva, R. M. Astray, A. F. Assoni,...
    • L. K. B. Kuroda, A. V. Gomes, R. Tavoni, P. F. A. Mancera, N. Varalta, and R. F. Camargo, Unexpected behavior of caputo fractional derivative,...
    • Y. Luo, C. Lin, W. Ren, F. Ju, Z. Xu, H. Liu, Z. Yu, J. Chen, J. Zhang, P. Liu, et al., Intravenous injections of a rationally selected oncolytic...
    • K. J. Mahasa, A. Eladdadi, L. De Pillis, and R. Ouifki, Oncolytic potency and reduced virus tumor-specificity in oncolytic virotherapy. a...
    • D. Matignon, Stability results for fractional differential equations with applications to control processing, Comput. Eng. Syst. Appl. 2 (1996),...
    • O. O. Mizrak, C. Mizrak, A. Kashkynbayev, and Y. Kuang, Can fractional differentiation improve stability results and data fitting ability...
    • M. K. Nono, E. B. M. Ngouonkadi, S. Bowong, and H. B. Fotsin, Hopf and backward bifurcations induced by immune effectors in a cancer oncolytic...
    • A. Nouni, K. Hattaf, and N. Yousfi, Dynamics of a mathematical model for cancer therapy with oncolytic viruses, Commun. Math. Biol. Neurosci....
    • M. D. Ortigueira and J. A. Machado, What is a fractional derivative?, J. Comput. Phys. 293 (2015), 4-13. DOI: https://doi.org/10.1016/j.jcp.2014.07.019
    • V. O. Pimentel, N. H. Rekers, A. Yaromina, N. G. Lieuwes, R. Biemans, C. M. L. Zegers, W. T. V. Germeraad, E. J. Van Limbergen, D. Neri, L....
    • D. G. Prakasha, N. S. Malagi, and P. Veeresha, New approach for fractional schrödinger-boussinesq equations with mittag-leffler kernel, Math....
    • D. G. Prakasha and P. Veeresha, Analysis of lakes pollution model with mittag-leffler kernel, J. Ocean. Eng. Sci. 5 (2020), no. 4, 310-322....
    • S. Qureshi, Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system, Chaos Soliton Fract....
    • R. Scherer, S. L. Kalla, Y. Tang, and J. Huang, The Grünwald-Letnikov method for fractional differential equations, Comput. Math. Appl. 62...
    • L. W. Seymour and K. D. Fisher, Oncolytic viruses: finally delivering, Brit. J. Cancer 114 (2016), no. 4, 357-361. DOI: https://doi.org/10.1038/bjc.2015.481
    • J. G. Silva, A. C. O. Ribeiro, R. F. Camargo, P. F. A. Mancera, and F. L. P. Santos, Stability analysis and numerical simulations via fractional...
    • P. Sopasakis, H. Sarimveis, P. Macheras, and A. Dokoumetzidis, Fractional calculus in pharmacokinetics, J. Pharmacokinet. Phar. 45 (2018),...
    • M. H. Tavassoli, A. Tavassoli, and M. R. O. Rahimi, The geometric and physical interpretation of fractional order derivatives of polynomial...
    • E. Ucar, N. Özdemir, and E. Altun, Fractional order model of immune cells influenced by cancer cells, Math. Model. Nat. Phenom. 14 (2019),...
    • N. Varalta, A. V. Gomes, and R. F. Camargo, A prelude to the fractional calculus applied to tumor dynamic, TEMA 15 (2014), no. 2, 211-221....
    • P. Veeresha and D. G. Prakasha, A reliable analytical technique for fractional Caudrey-Dodd-gibbon equation with Mittag-Leffler kernel, Nonlinear...
    • P. Veeresha and D. G. Prakasha, Solution for fractional generalized Zakharov equations with Mittag-Leffler function, Results Eng. 5 (2020),...
    • P. Veeresha, D. G. Prakasha, and H. M. Baskonus, New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo...
    • P. Veeresha, D. G. Prakasha, and J. Singh, Solution for fractional forced Kdv equation using fractional natural decomposition method, AIMS...
    • Y. Wang, G. Gao, X. Li, and Z. Chen, A fractional-order model-based state estimation approach for lithium-ion battery and ultra-capacitor...
    • D. Wodarz, Gene therapy for killing P53-negative cancer cells: use of replicating versus nonreplicating agents, Hum. Gene Ther. 14 (2003),...
    • D. Wodarz, Computational modeling approaches to studying the dynamics of oncolytic viruses, Math. Biosci. Eng. 10 (2013), no. 3, 939-957....
    • D. Wodarz and N. L. Komarova, Dynamics of cancer: mathematical foundations of oncology, World Scientific, Irvine, 2014. DOI: https://doi.org/10.1142/8973
    • X. J. Yang and J. A. Tenreiro Machado, A new insight into complexity from the local fractional calculus view point: modelling growths of populations,...
    • W. W. Yao, E. Ilhan, P. Veeresha, and H. M. Baskonus, A powerful iterative approach for quintic complex Ginzburg-Landau equation within the...
    • M. Zheng, J. Huang, A. Tong, and H. Yang, Oncolytic viruses for cancer therapy: barriers and recent advances, Mol. Ther. Oncolytics 15 (2019),...
    • Z. Zhu, M. J. Gorman, L. D. McKenzie, D. Lisa, J. N. Chai, C. G. Hubert, B. C. Prager, E. Fernandez, J. M. Richner, R. Zhang, C. Shan, E....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno