Ir al contenido

Documat


Estabilidad de sistemas lineales positivos por politopos invariantes

  • Leyva Castellanos, Horacio ; Carrillo Navarro, Francisco A. [1] ; Quiroz Compeán, Griselda Árbol académico ; Femat Flores, Ricardo
    1. [1] Universidad de Sonora

      Universidad de Sonora

      México

  • Localización: SahuarUS: Revista Electrónica de Matemáticas, ISSN-e 2448-5365, Vol. 7, Nº. 1, 2023 (Ejemplar dedicado a: Noveno Número), págs. 1-19
  • Idioma: español
  • DOI: 10.36788/sah.v7i1.136
  • Enlaces
  • Resumen
    • El objetivo principal de este artículo es describir la estabilidad de sistemas lineales positivos mediante politopos invariantes en el espacio de estados, de forma que a cada sistema estable le corresponde una familia de politopos invariantes. Además, para el caso del plano, presentamos una manera de estabilizar sistemas lineales positivos mediante el diseño de controles lineales.

  • Referencias bibliográficas
    • A. Bacciotti and L. Rosier, Liapunov functions and stability in control theory. Springer Science & Business Media, 2005.
    • Z. Bartosiewicz, “Stability and stabilization of linear positive systems on time scales,” Positivity, vol. 24, no. 5, pp. 1361–1372, 2020....
    • A. Berman and R. J. Plemmons, Nonnegative matrices in the mathematical sciences. SIAM, 1994.
    • N. P. Bhatia and G. P. Szegö, Stability theory of dynamical systems. Springer Science & Business Media, 2002.
    • S. P. Bhattacharyya and L. H. Keel, “Robust control: the parametric approach,” in Advances in control education 1994. Elsevier, 1995, pp....
    • V. S. Bokharaie, O. Mason, and F. Wirth, “Stability and positivity of equilibria for subhomogeneous cooperative systems,” Nonlinear Analysis:...
    • E. B. Castelan and J.-C. Hennet, “On invariant polyhedra of continuous-time linear systems,” IEEE Transactions on Automatic control, vol....
    • B. Du, S. Xu, Z. Shu, and Y. Chen, “On positively invariant polyhedrons for continuous-time positive linear systems,” Journal of the Franklin...
    • A. C. Enthoven and K. J. Arrow, “A Theorem on Expectations and the Stability of Equilibrium,” Econometrica: Journal of the Econometric Society,...
    • A. Fall, A. Iggidr, G. Sallet, and J.-J. Tewa, “Epidemiological models and Lyapunov functions,” Mathematical Modelling of Natural Phenomena,...
    • L. Farina and S. Rinaldi, Positive linear systems: theory and applications. John Wiley & Sons, 2000, vol. 50.
    • Z. Horváth, Y. Song, and T. Terlaky, “A Novel Unified Approach to Invariance for a Dynamical System,” arXiv preprint arXiv:1405.5167, 2014....
    • W. Leontief, Input-output economics. Oxford University Press, 1986.
    • H. Leyva, G. Quiroz, F. Carrillo, and R. Femat, “Rapid insulin stabilization via sliding modes control for T1DM therapy,” in Memorias del...
    • H. Leyva, F. A. Carrillo, G. Quiroz, and R. Femat, “Robust stabilization of positive linear systems via sliding positive control,” Journal...
    • D. G. Luenberger, Introduction to dynamic systems: theory, models, and applications. Wiley New York, 1979, vol. 1.
    • M. W. McConley, B. D. Appleby, M. A. Dahleh, and E. Feron, “A control Lyapunov function approach to robust stabilization of nonlinear systems,”...
    • G. Quiroz and R. Femat, “On hyperglicemic glucose basal levels in Type 1 Diabetes Mellitus from dynamic analysis,” Mathematical biosciences,...
    • A. Rantzer, “Scalable control of positive systems,” European Journal of Control, vol. 24, pp. 72–80, 2015. DOI: 10.1016/j.ejcon.2015.04.004
    • R. T. Rockafellar, Convex analysis. Princeton university press, 1997, vol. 11.
    • J. T. Sorensen, “A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes,”...
    • G. M. Ziegler, Lectures on polytopes. Springer New York, NY, 1995.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno