Ir al contenido

Documat


An Investigation on Existence and Optimal Feedback Control for Fractional Neutral Stochastic Evolution Hemivariational Inequalities

  • S. Vivek [1] ; V. Vijayakumar [1]
    1. [1] Vellore Institute of Technology
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 1, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper addresses some interesting results of optimal feedback control for neutral stochastic fractional systems in Hilbert spaces. We study the primary results by utilizing the theoretical concepts related to fractional calculus, fixed point theory of multivalued maps, and properties of generalized Clarke’s subdifferential type. Initially, we prove the existence of a mild solution by applying a fixed point technique. Then, we calculate the existence of feasible pair by employing the Filippov theorem and the Cesari property. Also, optimal feedback control results is developed under sufficient conditions. In addition, involving nonlocal conditions for the given control systems is discussed in a separate section. Further, we extend the given control systems with Sobolev-type and the existence of mild solution for the obtained system is evaluated by using the same fixed point theorem. In the end, a simple example is given for the effectiveness of the discussion.

  • Referencias bibliográficas
    • 1. Abbas, S.: Pseudo almost automorphic solutions of fractional order neutral differential equation. Semigroup Forum 81(3), 393–404 (2010)
    • 2. Abbas, S.: Pseudo almost periodic solution of stochastic functional differential equations. Int. J. Evol. Equ. 5(4), 1–13 (2011)
    • 3. Ahmed, H.M., El-Owaidy, H.M., Al-Nahhas, M.A.: Neutral fractional stochastic partial differential equations with Clarke subdifferential....
    • 4. Aubin, J.P., Frankowska, H.: Set Valued Analysis. Berkhauser, Boston (1990)
    • 5. Baishya, C., Premakumari, R.N., Samei, M.E., Naik, M.K.: Chaos control of fractional order nonlinear Bloch equation by utilizing sliding...
    • 6. Balder, E.J.: Necessary and sufficient conditions for L1-strong-weak lower semicontinuity of integral functionals. Nonlinear Anal. Theory...
    • 7. Belhadji, B., Alzabut, J., Samei, M.E., Fatima, N.: On the global behaviour of solutions for a delayed viscoelastic-type Petrovesky wave...
    • 8. Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal....
    • 9. Chen, J., Liu, Z.H., Lomovtsev, F.E., Obukhovskii, V.: Optimal feedback control for a class of secondorder evolution differential inclusions...
    • 10. Chen, P., Yongxiang, L., Xuping, Z.: Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution...
    • 11. Chikh, S.B., Amara, A., Etemad, S., Rezapour, S.: On Hyers–Ulam stability of a multi-order boundary value problems via Riemann–Liouville...
    • 12. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
    • 13. Denkowski, Z., Migorski, S., Papageorgiou, N.S.: An Introduction to non-linear analysis: Theory. Kluwer Academic Plenum Publishers, Boston,...
    • 14. Etemad, S., Rezapour, S.: On the existence of solutions for fractional boundary value problems on the ethane graph. Adv. Differ. Equ....
    • 15. Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic Systems. AddisonWesley, Boston (1986)
    • 16. Haslinger, J., Panagiotopoulos, P.D.: Optimal control of systems governed by hemivariational inequalities. Existence and approximation...
    • 17. Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis (Theory). Kluwer Academic Publishers, Dordrecht Boston, London (1997)
    • 18. Huang, Y., Liu, Z.H., Zeng, B.: Optimal control of feedback control systems governed by hemivariational inequalities. Comput. Math. Appl....
    • 19. Gou, H., Li, Y.: Extremal mild solutions to Hilfer evolution equations with non-instantaneous impulses and nonlocal conditions. Fract....
    • 20. Gou, H.: Study on Sobolev-type Hilfer evolution equations with non-instantaneous impulses. Int. J. Comput. Math. 100(5), 1153–1170 (2023)
    • 21. Gou, H., Li, Y.: A study on approximate controllability of non-autonomous evolution system with nonlocal conditions using sequence method....
    • 22. Jiang, Y., Zhang, Q., Huang, N.: Fractional stochastic evolution hemivariational inequalities and optimal controls. Topol. Methods Nonlinear...
    • 23. Johnson, M., Vijayakumar, V.: Optimal control results for Sobolev-type fractional stochastic VolterraFredholm integrodifferential systems...
    • 24. Kamenskii, M.I., Nistri, P., Obukhovskii, V.V., Zecca, P.: Optimal feedback control for a semilinear evolution equation. J. Optim. Theory...
    • 25. Khan, A., Khan, H., Gómez-Aguilar, J.F., Abdeljawad, T.: Existence and Hyers–Ulam stability for a nonlinear singular fractional differential...
    • 26. Khan, A., Syam, M.I., Zada, A., Khan, H.: Stability analysis of nonlinear fractional differential equations with Caputo and Riemann–Liouville...
    • 27. Khan, A., Khan, Z.A., Abdeljawad, T., Khan, H.: Analytical analysis of fractional-order sequential hybrid system with numerical application....
    • 28. Khan, A., Gómez-Aguilar, J.F., Khan, T.S., Khan, H.: Stability analysis and numerical solutions of fractional order HIV/AIDS model. Chaos,...
    • 29. Khan, H., Gómez-Aguilar, J.F., Alkhazzan, A., Khan, A.: A fractional order HIV-TB coinfection model with nonsingular Mittag-Leffler Law....
    • 30. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, p. 204. Elsevier, Amsterdam...
    • 31. Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Birkhauser, Boston (1995)
    • 32. Li, X., Liu, Z.H., Papageorgiou, N.S.: Solvability and pullback attractor for a class of differential hemivariational inequalities with...
    • 33. Lu, L., Liu, Z.H., Zhao, J.: A class of delay evolution hemivariational inequalities and optimal feedback controls. Methods Nonlinear...
    • 34. Liu, Y., Liu, Z., Papageorgiou, N.S.: Sensitivity analysis of optimal control problems driven by dynamic history-dependent variational-hemivariational...
    • 35. Liu, Y., Liu, Z.H., Peng, S., Wen, C.F.: Optimal feedback control for a class of fractional evolution equations with history-dependent...
    • 36. Liu, Z.H., Papageorgiou, N.S.: Double phase Dirichlet problems with unilateral constraints. J. Differ. Equ. 316(15), 249–269 (2022)
    • 37. Liu, Z.H., Migórski, S., Zeng, B.: Optimal feedback control and controllability for hyperbolic evolution inclusions of Clarke’s subdifferential...
    • 38. Liu, Z.H.: Existence results for Quasilinear parabolic hemivariational inequalities. J. Differ. Equ. 244, 1395–1409 (2008)
    • 39. Mees, A.I.: Dynamics of Feedback Systems. Wiley, New York (1981)
    • 40. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities, Models and Analysis of Contact Problems....
    • 41. Migórski, S., Ochal, A.: Optimal control of parabolic hemivariational inequalities. J. Glob. Optim. 17, 285–300 (2000)
    • 42. Mahmudov, N.I., Udhayakumar, R., Vijayakumar, V.: On the approximate controllability of secondorder evolution hemivariational inequalities....
    • 43. Mahmudov, N.I., Murugesu, R., Ravichandran, C., Vijayakumar, V.: Approximate controllability results for fractional semilinear integro-differential...
    • 44. Panagiotopoulos, P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer, Berlin (1993)
    • 45. Panagiotopoulos, P.D.: Nonconvex superpotentials in sense of F. H. Clarke and Applications. Mech. Res. Commun. 8, 335–340 (1981)
    • 46. Park, J.Y., Park, S.H.: Optimal control problems for anti-periodic quasi-linear hemivariational inequalities. Optim. Control Appl. Methods...
    • 47. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. SpringerVerlag, New York (1983)
    • 48. Phuong, N.D., Sakar, F.M., Etemad, S., Rezapour, S.: A novel fractional structure of a multi-order quantum multi-integro-differential...
    • 49. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
    • 50. Prato, G.D., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)
    • 51. Sakthivel, R., Anandhi, E.R.: Approximate controllability of impulsive differential equations with state-dependent delay. Int. J. Control...
    • 52. Santra, S.S., Mondal, P., Samei, M.E., Alotaibi, H., Altanji, M., Botmart, T.: Study on the oscillation of solution to second-order impulsive...
    • 53. Shukla, A., Sukavanam, N., Pandey, D.N.: Controllability of semilinear stochastic control system with finite delay. IMA J. Math. Control....
    • 54. Shukla, A., Sukavanam, N., Pandey, D.N.: Complete controllability of semilinear stochastic systems with delay in both state and control....
    • 55. Vijayakumar, V.: Approximate controllability for a class of second-order stochastic evolution inclusions of Clarke’s subdifferential type....
    • 56. Wang, J., Zhou, Y.: A class of fractional evolution equations and optimal controls. Nonlinear Anal. Real World Appl. 12, 262–272 (2011)
    • 57. Yan, Z.: Sensitivity analysis for a fractional stochastic differential equation with S p-weighted pseudo almost periodic coefficients...
    • 58. Yan, Z., Zhou, Y.H.: Optimization of exact controllability for fractional impulsive partial stochastic differential systems via analytic...
    • 59. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno