Ir al contenido

Documat


Bounded Variation Solution for a Class of Kirchhoff Type Problem Involving the 1-Laplacian Operator

  • Rui Liu [1] ; Lin Li [1] ; Donal O Regan [2]
    1. [1] Chongqing Technology and Business University

      Chongqing Technology and Business University

      China

    2. [2] University of Galway
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 1, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this work, we study the existence of a nontrivial bounded variation solution to a class of nonlocal elliptic problems of Kirchhoff type involving the 1-Laplacian operator in the whole space RN and we will work with the space of functions of bounded variation. The Mountain Pass Theorem shows the existence of a nontrivial solution when f is an asymptotically constant nonlinearity.

  • Referencias bibliográficas
    • 1. Aissaoui, N., Long, W.: Positive solutions for a Kirchhoff equation with perturbed source terms. Acta Math. Sci. Ser. B 42(5), 1817–1830...
    • 2. Alves, C.O., Corrêa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl....
    • 3. Alves, C.O., Figueiredo, G.M., Pimenta, M.T.O.: Existence and profile of ground-state solutions to a 1-Laplacian problem in RN . Bull....
    • 4. Alves, C.O., Ourraoui, A., Pimenta, M.T.O.: Multiplicity of solutions for a class of quasilinear problems involving the 1-Laplacian operator...
    • 5. Alves, C.O., Pimenta, M.T.O.: On existence and concentration of solutions to a class of quasilinear problems involving the 1-Laplace operator....
    • 6. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. In: Oxford Mathematical Monographs....
    • 7. Anzellotti, G.: The Euler equation for functionals with linear growth. Trans. Am. Math. Soc. 290(2), 483–501 (1985)
    • 8. Aouaoui, S., Dhifet, M.: Bounded variation solution to 1-Laplacian Kirchhoff type problem in RN . Complex Var. Elliptic Equ. 68(2), 200–211...
    • 9. Chambolle, A.: Variational analysis in Sobolev and BV spaces. Applications to PDEs and optimization. SIAM Rev. 58(4), 800–802 (2016)
    • 10. Chang, K.-C.: Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math....
    • 11. Degiovanni, M., Magrone, P.: Linking solutions for quasilinear equations at critical growth involving the “1-Laplace” operator. Calc....
    • 12. Figueiredo, G.M., Pimenta, M.T.O.: Nehari method for locally Lipschitz functionals with examples in problems in the space of bounded variation...
    • 13. Figueiredo, G.M., Pimenta, M.T.O.: Strauss’ and Lions’ type results in BV(RN ) with an application to an 1-Laplacian problem. Milan J....
    • 14. He, X.-M., Zou, W.-M.: Multiplicity of solutions for a class of Kirchhoff type problems. Acta Math. Appl. Sin. Engl. Ser. 26, 387–394...
    • 15. Heidarkhani, S., Ghobadi, A., Avci,M.:Multiple solutions for a class of p(x)-Kirchhoff-type equations. Appl. Math. E Notes 22, 160–168...
    • 16. Hirosawa, F.: Global solvability for the generalized degenerate Kirchhoff equation with real-analytic data in Rn. Tsukuba J. Math. 21(2),...
    • 17. Mao, A., Zhang, Z.: Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition. Nonlinear Anal. 70(3),...
    • 18. Ortiz Chata, J.C., Pimenta, M.T.O.: A Berestycki–Lions’ type result to a quasilinear elliptic problem involving the 1-Laplacian operator....
    • 19. Squassina, M.: On Palais’ principle for non-smooth functionals. Nonlinear Anal. 74(11), 3786–3804 (2011)
    • 20. Szulkin, A.: Minimax principles for a class of lower semicontinuous functions and applications to nonlinear boundary value problems. In:...
    • 21. Wang, Z., Sun, M., Chen, Y., Zhao, L.: Multiplicity results for the Kirchhoff type equation via critical groups. Bound. Value Probl. 2018,...
    • 22. Zhou, F., Shen, Z.: Existence of a radial solution to a 1-Laplacian problem in RN . Appl. Math. Lett. 118, 107138 (2021)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno