Ir al contenido

Documat


Vision-Based Human Posture Detection from a Virtual Home-Care Unmanned Aerial Vehicle

  • Autores: Andrés Bustamante Londoño, Lidia María Belmonte, Antonio Pereira González, Pascual González Galindo, Antonio Fernández Caballero Árbol académico, Rafael Morales Ruiz
  • Localización: Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence: 9th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2022, Puerto de la Cruz, Tenerife, Spain, May 31 – June 3, 2022, Proceedings, Part II / José Manuel Ferrández Vicente (dir. congr.) Árbol académico, José Ramón Álvarez Sánchez (dir. congr.) Árbol académico, Félix de la Paz López (dir. congr.) Árbol académico, Hojjat Adeli (aut.), 2022, ISBN 978-3-031-06527-9, págs. 482-491
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Monitoring is essential to provide assistance to people who require home care due to their age or health condition. This paper presents the vision-based detection of three postures of a person (standing, sitting and laying down) from an unmanned aerial vehicle. The proposal uses the MediaPipe Pose Python module, considering only seven skeleton points and a set of trigonometric calculations. The work is evaluated in a Unity virtual reality (VR) environment that simulates the monitoring process of an assistant UAV. The images acquired by the UAV’s on-board camera are sent from the VR visualiser to the Python module via the Message Queue Telemetry Transport (MQTT) protocol. The simulation shows very promising results for the detection of a person’s postures.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno