Ir al contenido

Documat


Impact of artificial intelligence on assessment methods in primary and secondary education: Systematic literature review

  • Autores: Miguel Martínez, Xurxo Rigueira Díaz, Ana Larranaga, Javier Martínez Torres Árbol académico, Iago Ocarranza Prado, Denis Kreibel
  • Localización: Revista de psicodidáctica, ISSN 1136-1034, Vol. 28, Nº. 2, 2023, págs. 93-103
  • Idioma: inglés
  • DOI: 10.1016/j.psicod.2023.06.001
  • Títulos paralelos:
    • Impacto de la inteligencia artificial en los métodos de evaluación en la educación primaria y secundaria: revisión sistemática de la literatura
  • Enlaces
  • Resumen
    • español

      El sector educativo puede enriquecerse con la incorporación de la inteligencia artificial (IA) en diversos aspectos. El campo de la inteligencia artificial y sus aplicaciones en el sector educativo dan lugar a un campo multidisciplinar en el que confluyen la informática, la estadística, la psicología y, por supuesto, la educación. Dentro de este contexto, esta revisión pretende sintetizar las investigaciones existentes centradas en proporcionar mejoras en la evaluación del alumno de primaria/secundaria utilizando alguna herramienta de IA. Así, nueve estudios de investigación originales (641 participantes), publicados entre 2010 y 2023, cumplen con los criterios de inclusión definidos en esta revisión bibliográfica sistemática. Las principales aportaciones de la aplicación de la IA en la evaluación del alumno de estos niveles educativos inferiores se centran en la predicción de su rendimiento, evaluaciones más objetivas y automatizadas mediante redes neuronales o procesamiento del lenguaje natural, el uso de robots educativos para analizar su proceso de aprendizaje y la detección de factores específicos que hacen más atractivas las clases. Esta revisión muestra las posibilidades y los usos ya existentes que la IA puede aportar a la educación, concretamente en la evaluación del rendimiento del alumno de primaria y secundaria. el uso de robots educativos para analizar su proceso de aprendizaje y la detección de factores específicos que hacen más atractivas las clases. Esta revisión muestra las posibilidades y los usos ya existentes que la IA puede aportar a la educación, concretamente en la evaluación del rendimiento del alumno de primaria y secundaria. el uso de robots educativos para analizar su proceso de aprendizaje y la detección de factores específicos que hacen más atractivas las clases. Esta revisión muestra las posibilidades y los usos ya existentes que la IA puede aportar a la educación, concretamente en la evaluación del rendimiento del alumno de primaria y secundaria.

    • English

      The educational sector can be enriched by the incorporation of artificial intelligence (AI) in various aspects.

      The field of artificial intelligence and its applications in the education sector give rise to a multidisciplinary field that brings together computer science, statistics, psychology and, of course, education. Within this context, this review aimed to synthesise existing research focused on provide improvements on primary/secondary student assessment using some AI tool. Thus, nine original research studies (641 participants), published between 2010 and 2023, met the inclusion criteria defined in this systematic literature review. The main contributions of the application of AI in the assessment of students at these lower educational levels focus on predicting their performance, automating and making evaluations more objective by means of neural networks or natural language processing, the use of educational robots to analyse their learning process, and the detection of specific factors that make classes more attractive.

      This review shows the possibilities and already existing uses that AI can bring to education, specifically in the evaluation of student performance at the primary and secondary levels.

  • Referencias bibliográficas
    • Alam, A. (2021). Possibilities and apprehensions in the landscape of artificial intelligence in education. 2021 International Conference on...
    • Alonso, C., Martínez, I., Caballero, R., Freire, M., y Fernández, B. (2020). Predicting students’ knowledge after playing a serious game based...
    • Anjos, O., Martinez, M., Caldeira, I., Pedro, S., Eguía, P., y Canas, S. (2020). Application of functional data analysis and FTIR-ATR spectroscopy...
    • Aslam, N., Khan, I., Alamri, L., y Almuslim, R. (2021). An improved early student’s academic performance prediction using deep learning. International...
    • Baepler, P., y Murdoch, C. J. (2010). Academic analytics and data mining in higher education. International Journal for the Scholarship of...
    • Beaulac, C., y Rosenthal, J. S. (2019). Predicting university students’ academic success and major using random forests. Research in Higher...
    • Bonam, B., Piazentin, L., y Possa, A. D. (2020). Educación, big data e inteligencia artificial: Metodologías mixtas en plataformas digitales....
    • Caratozzolo, P., Rodriguez, J., y Alvarez, A. (2022). Natural language processing for learning assessment in STEM 2022 IEEE. pp. 1549–1554....
    • Chassignol, M., Khoroshavin, A., Klimova, A., y Bilyatdinova, A. (2018). Artificial intelligence trends in education: A narrative overview....
    • Chen, L., Chen, P., y Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/ACCESS....
    • Chen, X., Xie, H., Zou, D., y Hwang, G. J. (2020). Application and theory gaps during the rise of artificial intelligence in education. Computers...
    • Chen, X., Zou, D., Xie, H., Cheng, G., Liu, C., & Two decades of artificial intelligence in education: Contributors, collaborations, research...
    • Cruz, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., y Rosa, A. (2020). Using artificial intelligence methods to assess...
    • Denes, G. (2023). A case study of using AI for General Certificate of Secondary Education (GCSE) grade prediction in a selective independent...
    • Dowell, N., Lin, Y., Godfrey, A., Brooks, C., & Promoting inclusivity through time-dynamic discourse analysis in digitally-mediated collaborative...
    • Gough, D., Thomas, J., y Oliver, S. (2017). An introduction to systematic reviews. SAGE Publications Ltd., http://digital.casalini.it/9781473968219.
    • Hans, V. B., y Crasta, S. J. (2019). Digitalization in the 21st Century: Impact on learning and doing. Journal of Global Economy, 15(1), 12–23.
    • Hsu, T.-C., Abelson, H., Lao, N., Tseng, Y.-H., y Lin, Y.-T. (2021). Behavioral-pattern exploration and development of an instructional tool...
    • Hwang, G. J., Xie, H., Wah, B. W., y Gaˇsevi ´c, D. (2020). Vision, challenges, roles and research issues of Artificial Intelligence in Education....
    • Jabeur, S. B., Gharib, C., Mefteh, S., y Arfi, W. B. (2021). CatBoost model and artificial intelligence techniques for corporate failure prediction....
    • Kaelbling, L. P., y Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237–285.
    • Kahraman, H. T., Sagiroglu, S., y Colak, I. (2010). Development of adaptive and intelligent web-based educational systems. 2010 4th International...
    • Kaya, I. E. (2019). Artificial neural networks as a decision support tool in curriculum development. International Journal on Artificial Intelligence...
    • Knox, J. (2020). Artificial intelligence and education in China. Learning. Media and Technology, 45(3), 298–311. https://doi.org/10.1080/17439884.2020.1754236
    • Kuleto, V., Ilic, M., Dumangiu, M., Rankovic, M., Martins, O. M. D., Paun, D., y Mihoreanu, L. (2021). Exploring opportunities and challenges...
    • Lamb, R., Neumann, K., y Linder, K. A. (2022). Real-time prediction of science student learning outcomes using machine learning classification...
    • Luckin, R., Holmes, W., Griffiths, M., y Forcier, L. B. (2016). Intelligence unleashed: An argument for AI in intelligence unleashed.
    • Luckin, R., y Cukurova, Y. M. (2019). Designing educational technologies in the age of AI: A learning sciences-driven approach. British Journal...
    • Martínez, M., Eguía, P., Martínez, J., Febrero, L., y Granada, E. (2022). Optimisation of thermal comfort and indoor air quality estimations...
    • Martínez, M., Ogando, A., Troncoso, F., López, J., Febrero, L., y Granada, E. (2021). Use of optimised MLP neural networks for spatiotemporal...
    • Martínez, Á., Cruz, A., y Fernández, J. A. (2019). Teaching machine learning in robotics interactively: the case of reinforcement learning...
    • Martínez, J., Pastor, J., Sancho, J., McNabola, A., Martínez, M., y Gallagher, J. (2020). A functional data analysis approach for the detection...
    • Merceron, A., y Yacef, K. (2004). Mining student data captured from a web-based tutoring tool: Initial exploration and results. Journal of...
    • Mostow, J., y Beck, J. (2006). Some useful tactics to modify, map and mine data from intelligent tutors. Natural Language Engineering, 12(2),...
    • Okewu, E., Adewole, P., Misra, S., Maskeliunas, R., y Damasevicius, R. (2021). Artificial neural networks for educational data mining in higher...
    • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan,...
    • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan,...
    • Pivetti, M., Di Battista, S., Agatolio, F., Simaku, B., Moro, M., y Menegatti, E. (2020). Educational robotics for children with neurodevelop-mental...
    • Richardson, M., y Clesham, R. (2021). Rise of the machines? The evolving role of Artificial Intelligence (AI) technologies in high stakes...
    • Rigueira, X., Araújo, M., Martínez, J., García, P. J., y Ocarranza, I. (2022). Functional data analysis for the detection of outliers and...
    • Romero, C., y Ventura, S. (2010). Educational data mining: A review of the state of the art. IEEE Transactions on Systems. Man and Cybernetics...
    • Romero, C., Ventura, S., y García, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers and Education,...
    • Romero, C., Zafra, A., Luna, J. M., y Ventura, S. (2013). Association rule mining using genetic programming to provide feedback to instructors...
    • Samoilescu, R., Dascalu, M., Sirbu, M., Trausan, S., Crossley, S. A. (2019). Modeling collaboration in online conversations using time series...
    • Santos, O. C., y Boticario, J. G. (2014). Involving users to improve the collaborative logical framework. The Scientific World Journal, 2014,...
    • Sarker, I. H. (2021a). Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer...
    • Sarker, I. H. (2021b). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(3), 1–21. https://doi.org/10.1007/s42979-021-00592-x
    • Sarker, I. H. (2022). AI-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems. SN...
    • Thanh, N. H., y Tuan, B. A. (2021). We are using artificial intelligence in assessing students’ achievement at high schools: A case study...
    • Thomas, C., Puneeth, K. A., Swaroop, V., y Jayagopi, S. D. B. (2022). Automatic prediction of presentation style and student engagement from...
    • Tlili, A., Chang, M., Moon, J., Liu, Z., Burgos, D., Chen, N. S., y Kinshuk. (2021). A systematic literature review of empirical studies on...
    • Troncoso, F., Martínez, M., Ogando, A., López, J., Eguía, P., y Febrero, L. (2022). IoT-based platform for automated IEQ spatio-temporal analysis...
    • Tuyishimire, E., Mabuto, W., Gatabazi, P., y Bayisingize, S. (2022). Detecting learning patterns in tertiary education using k-means clustering....
    • Van Laar, E., Van Deursen, A. J. A. M., Van Dijk, J. A. G. M., y de Haan, J. (2017). The relation between 21st-century skills and digital...
    • Ventura, M. D. (2017). Creating inspiring learning environments by means of digital technologies: A case study of the effectiveness of WhatsApp...
    • Ventura, M. D. (2018). Twitter as a music education tool to enhance the learning process: Conversation analysis. En L. Deng, W. W. K. Ma,...
    • Wiley, J., Hastings, P., Blaum, D., Jaeger, A. J., Hughes, S., Wallace, P., Griffin, T. D., y Britt, M. A. (2017). Different approaches to...
    • Xu, X., Wang, J., Peng, H., y Wu, R. (2019). Prediction of academic performance associated with internet usage behaviors using machine learning...
    • Yunanto, A. A., Herumurti, D., Rochimah, S., y Kuswardayan, I. (2019). English education game using non-player character based on natural...
    • Zadeh, L. A. (2008). Is there a need for fuzzy logic? Information Sciences, 178(13), 2751–2779. https://doi.org/10.1016/j.ins.2008.02.012
    • Zafari, M., Sadeghi, A., Choi, S.-M., y Esmaeily, A. (2021). A practical model for the evaluation of high school student performance based...
    • Zhang, K., y Aslan, A. B. (2021). AI technologies for education: Recent research & future directions. Computers and Education: Artificial...
    • Zhang, R., y Zou, D. (2020). Types, purposes, and effectiveness of state-of-the-art technologies for second and foreign language learning....
    • Zhang, Z., Yilmaz, L., y Liu, B. (2021). A Critical review of inductive logic programming techniques for explainable AI, 1–17, arXiv. https://doi.org/10.48550/ARXIV.2112.15319

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno