Ir al contenido

Documat


A mixed quadratic programming model for a robust support vector machine

  • Serna-Diaz, Raquel [1] ; Santos Leite, Raimundo [2] ; S. Silva, Paulo J. [3]
    1. [1] Universidad Nacional Agraria La Molina

      Universidad Nacional Agraria La Molina

      Perú

    2. [2] Universidade Federal de Ouro Preto

      Universidade Federal de Ouro Preto

      Brasil

    3. [3] Universidade Estadual de Campinas

      Universidade Estadual de Campinas

      Brasil

  • Localización: Selecciones Matemáticas, ISSN-e 2411-1783, Vol. 8, Nº. 1, 2021 (Ejemplar dedicado a: Enero-Julio), págs. 27-36
  • Idioma: inglés
  • Títulos paralelos:
    • Un modelo de programación cuadrática mixta para una máquina de soporte vectorial robusta
  • Enlaces
  • Resumen
    • español

      Las máquinas de soporte vectorial son ampliamente usadas para resolver problemas de clasificación en el área de reconocimiento de patrones. Ellas tratan con pequeñas cantidades de errores utilizando el concepto de margen suave, dado que permite una clasificación imperfecta. Sin embargo, si los datos de entrenamiento tienen errores sistemáticos o valores atípicos, tal estrategia no es sólida resultando en una mala generalización. En este artículo presentamos un modelo robusto de clasificación de máquinas de soporte vectorial que hace posible ignorar aitomaticamente datos espurios Seguidamente mostramos que el modelo se puede resolver utilizando un software de alto rendimiento para programación cuadrática entera y se presentan experimentos numéricos que utilizan datos del mundo real que parecen prometedores.

    • English

      Support Vector Machines are extensively used to solve classification problems in Pattern Recognition. They deal with small errors in the training data using the concept of soft margin, that allowfor imperfect classification.

      However, if the training data have systematic errors or outliers such strategy is not robust resulting in bad generalization. In this paper we present a model for robust Support Vector Machine classification that can automatically ignore spurius data. We show then that the model can be solved using a high performance Mixed Integer Quadratic Programming solver and present preliminary numerical experiments using real world data that looks promissing.

  • Referencias bibliográficas
    • Zhan Y Shen D. Increasing Efficiency of SVM by Adaptively Penalizing Outliers. In: Rangarajan A., Vemuri B., Yuille A.L.(eds) Energy Minimization...
    • R SHNMMS. On Improving the Generalization of SVMClassifier. vol. 157. Springer, Berlin, Heidelberg: Computer Networks and Intelligent Computing;...
    • Hoak J. The Effects of Outliers on Support VectorMachines; 2010.
    • Thongkam J, XuYanchun G, Huang ZF. Support Vector Machine for Outlier Detection in Breast Cancer Survivability Prediction. vol. 4977 (99-109)....
    • Debruyne M. An Outlier Map for Support Vector Machine Classification. Universiteit Antwerpen: The Annals of Applied Statistics; 2009.
    • Xu L, Crammer K, Schuurmans D. Robust Support Vector Machine Training via Convex Outlier Ablation. In: Proceedings of the Twenty-First National...
    • Tsyurmasto P, Zabarankin M, Uryasev S. Value-at-Risk Support Vector Machine: Stability to Outliers. vol. 28 (218–232). Journal of Combinatorial...
    • Andreani R, Martínez JM, Martínez L, Yano FS. Low Order-Value Optimization and Applications. vol. 43 (1-22). Journal of Global Optimization;...
    • Hess EJ, Brooks JP. The Support Vector Machine and Mixed Integer Linear Programming: Ramp Loss SVM with L1-Norm Regularization. 14th INFORMS...
    • Anguita D, Ghio A, Pischiutta S, Ridella S. A support vector machine with integer parameters. vol. 72 (480-489).
    • Neurocomputing;2008.
    • Gurobi Optimization L. Gurobi Optimizer ReferenceManual; 2020. Available from: http://www.gurobi.com.
    • Deng N, Tian Y, Zhang C. Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions. Chapman & Hall/CRC DataMining...
    • Cominetti R, Mascarenhas WF, Silva PJS. A Newton’s Method for the Continuous Quadratic Knapsack Problem. vol. 6(151–169). Mathematical Programming...
    • Birgin EG, Martínez JM, RaydanM. Nonmonotone Spectral ProjectedGradientMethods for Convex Sets. vol. 10 (1196–1211). SIAM Journal on Optimization;...
    • Chang CC, Lin CJ. LIBSVM: A Library for Support Vector Machines. vol. 2(7:1–27:27). ACM Transactions on Intelligent Systems and Technology;...
    • Boyd SP, Vandenberghe L. Convex Optimization. Cambridge, UK ; New York: Cambridge University Press; 2004.
    • Gaudioso M, Gorgone E, Hiriart-Urruty J. Feature selection in SVM via Polyhedral k-norm. Optimization Letters (19-36); 2020.
    • Leite RS. Support VectorMachines and the Low Order-Value Optimization. Campinas; 2019.
    • Street WN, Wolberg WH, Mangasarian OL. Nuclear Feature Extraction for Breast Tumor Diagnosis. In: Biomedical Image Processing and Biomedical...
    • Mangasarian OL, Street WN, Wolberg WH. Breast Cancer Diagnosis and Prognosis Via Linear Programming. vol. 43 (570–577). Operations Research;...
    • Sigillito VG, Wing SP, Hutton LP, Baker KB. Classification of Radar Returns from the Ionosphere Using Neural Networks. 19. Johns Hopkins APL...
    • Dal Pozzolo A, Boracchi G, Caelen O, Alippi C, Bontempi G. Credit Card Fraud Detection: A Realistic Modeling and a Novel Learning Strategy....
    • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-Learn: Machine Learning in Python. vol. 12. Journal of...
    • Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines: And Other Kernel-Based Learning Methods. Cambridge ; New York:...
    • Horst R, Thoai NV. DC Programming: Overview. vol. 103 (1–43). Journal of Optimization Theory and Applications; 1999-10-01.
    • Martinez-Legaz JE, VolleM. Duality in D.C. Programming: The Case of Several D.C. Constraints. vol. 237 (657–671). Journal of Mathematical...
    • Tao PD, An LTH. Convex Analysis Approach to D. C. Programming: Theory, Algorithms and Applications. vol. 22(289–355). ACTA MATHEMATICA VIETNAMICA;...
    • Bertsekas DP. Convex Optimization Theory. Belmont, Massachusetts: Athena Scientific; 2009-06-30.
    • Calafiore G, El Ghaoui L. OptimizationModels. Cambridge: Cambridge University Press; 2014.
    • Hiriart-Urruty JB, Lemaréchal C. Fundamentals of Convex Analysis. Grundlehren Text Editions. Berlin Heidelberg: Springer-Verlag; 2001. Available...
    • Arora S, Bhattacharjee D, Nasipuri M, Malik L, KunduM, Basu D. Performance Comparison of SVM and ANN for Handwritten Devnagari Character Recognition....
    • Joachims T. Estimating the Generalization Performance of an SVM Efficiently. Proceedings of the Seventeenth International Conference onMachine...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno