Ir al contenido

Documat


Propiedades de las funciones enteras representadas por series de Taylor lagunares (orden finito)

  • Autores: Ferran Sunyer Balaguer
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 2, Fasc. 1-2, 1949, págs. 129-174
  • Idioma: español
  • Enlaces
  • Resumen
    • Dans le chapitre 1 je donne des résultats dèjá connus, le premier ces résultats est, à vrai dire, une extension du résultat publié antérieurement.

      Dans le chapitre 2, à l'aide des propiétés des fonctions représentées par des séries de Taylor lacunaires , nous étudions, dans l'espace fonctionnel des fonctions entières d'ordre précise équivalent à $\rho(r)$, l'ensemble des fonctions qui ont une valeur exceptionelle et l'ensemble des fonctions qui appartiennent à la classe sinusoidal ,classe que nous définissons dans le même chapitre.

      Dans le chapitre 3 nous démontrons en premier lieu , que l'introductions d'une condition lacunaire fait disparaître la possible exceptions dans le théorème de Nevanlinna que, d'une forme abrégée, on peut énoncer comme suit: deux fonctions qui prennent quatre valeurs dans les mêmes points, sont identiques. en deuxième lien nous démontrons que moyennant une condition lacunaire , un autre téhorème d'unicité, dû aussi Nevalinna, peut s'étendre au cas de l'ordre entier ,mais uniquement pour les fonctions entières.

      Finalement, dans le chapitre 4 j'etablis une classification des valeurs asymptomatiques d'après la courbe décrite par la variable et d'après la rapidité avec laquelle la fonction tend vers le valeur asymtotique; je donne ensuite des conditions lacunaires suffisantes pour affirmer l'imposibilité de l'existence de valeurs asymtotiques de classe et de type déterminés.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno