Ir al contenido

Documat


Interior estimates for the Monge–Ampère type fourth order equations

  • Ling Wang [1] ; Bin Zhou [1]
    1. [1] Peking University

      Peking University

      China

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 39, Nº 5, 2023, págs. 1895-1923
  • Idioma: inglés
  • DOI: 10.4171/RMI/1361
  • Enlaces
  • Resumen
    • In this paper, we give several new approaches to study interior estimates for a class of fourth order equations of Monge–Ampère type. First, we prove interior estimates for the homogeneous equation in dimension two by using the partial Legendre transform. As an application, we obtain a new proof of the Bernstein theorem without using Caffarelli–Gutiérrez’s estimate, including the Chern conjecture on affine maximal surfaces. For the inhomogeneous equation, we also obtain a new proof in dimension two by an integral method relying on the Monge–Ampère Sobolev inequality. This proof works even when the right-hand side is singular. In higher dimensions, we obtain the interior regularity in terms of integral bounds on the second derivatives and the inverse of the determinant.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno