Ir al contenido

Documat


Non-existence Results for a Nonlinear Fractional System of Differential Problems

  • Autores: Mohammed D. Kassim, Thabet Abdeljawad
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 1, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The non-existence of solutions is discussed for a system of fractional differential equations including two types of fractional derivatives: the Caputo fractional derivative (CFD) and the Riemann–Liouville fractional derivative (RLFD). The nonlinear sources are nonlocal in time. The system we consider is more general than those previously discussed in the literature. Our results are obtained by using several properties of fractional derivatives, the test-function method and by applying some integral inequalities. Finally, we provide some examples to illustrate our findings.

  • Referencias bibliográficas
    • 1. Agarwal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A: Math. Theor. 40(24), 6287–6303 (2007)
    • 2. Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential...
    • 3. Agarwal, R.P., Belmekki, M., Benchohra, M.: A survey on semilinear differential equations and inclusions involving Riemann–Liouville fractional...
    • 4. Anastassiou, G.A.: Opial type Inequalities involving Riemann–Liouville fractional derivatives of two functions with applications. Math....
    • 5. Bas, E., Ozarslan, R., Baleanu, D., Ercan, A.: Comparative simulations for solutions of fractional Sturm–Liouville problems with non-singular...
    • 6. Ercan, A., Ozarslan, R., Bas, E.: Existence and uniqueness analysis of solutions for Hilfer fractional spectral problems with applications....
    • 7. Furati, K.M., Tatar, N.-E.: An existence result for a nonlocal fractional differential problem. J. Fract. Calc. 26, 43–51 (2004)
    • 8. Furati, K.M., Tatar, N.-E.: Behavior of solutions for a weighted Cauchy-type fractional differential problem. J. Fract. Calc. 28, 23–42...
    • 9. Furati, K.M., Kirane, M.: Necessary conditions for the existence of global solutions to systems of fractional differential equations. Fract....
    • 10. Kassim, M.D., Ali, S.M., Abdo, M.S., Jarad, F.: Non-existence results of Caputo-type fractional problem. Adv. Diff. Eq. 2021, 1–12 (2021)
    • 11. Kassim, M.D., Furati, K.M., Tatar, N.-E.: On a differential equation involving Hilfer–Hadamard fractional derivative. Abstr. Appl. Anal....
    • 12. Kassim, M.D., Furati, K.M., Tatar, N.-E.: Non-existence for fractionally damped fractional differential problems. Acta Math. Sci. 37(1),...
    • 13. Kassim, M.D., Tatar, N.-E.: Convergence of solutions of fractional differential equations to power-type functions. Electron. J. Diff....
    • 14. Kassim, M.D., Tatar, N.-E.: Asymptotic behavior of solutions of fractional differential equations with Hadamard fractional derivatives....
    • 15. Kassim, M.D., Tatar, N.-E.: Non-existence of global solutions for fractional differential problems with power type source term. Mediterr....
    • 16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Oxford...
    • 17. Kilbas, A.A., Marichev, O.I., Samko, S.G.: Fractional Integral and Derivatives (Theory and Applications). Gordon and Breach, Switzerland...
    • 18. Kirane, M., Medved, M., Tatar, N.-E.: On the non-existence of blowing-up solutions to a fractional functional differential equations....
    • 19. Kirane, M., Tatar, N.-E.: Non-existence of solutions to a hyperbolic equation with a time fractional damping. Zeitschrift für Anal. und...
    • 20. Kirane, M., Tatar, N.-E.: Absence of local and global solutions to an elliptic system with time-fractional dynamical boundary conditions....
    • 21. Kirane, M., Laskri, Y., Tatar, N.-E.: Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal...
    • 22. Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities: Cauchy’s Equation and Jensen’s Inequality. Birkh äuser,...
    • 23. Laskri, Y., Tatar, N.-E.: The critical exponent for an ordinary fractional differential problem. Comput. Math. Appl. 59, 1266–1270 (2010)
    • 24. Mehandiratta, V., Mehra, M., Leugering, G.: Existence and uniqueness results for a nonlinear Caputo fractional boundary value problem...
    • 25. Mehandiratta, V., Mehra, M., Leugering, G.: Fractional optimal control problems on a star graph: optimality system and numerical solution....
    • 26. Mehandiratta, V., Mehra, M., Leugering, G.: Distributed optimal control problems driven by space-time fractional parabolic equations....
    • 27. Mehandiratta, V., Mehra, M., Leugering, G.: Well-posedness, optimal control and discretization for time-fractional parabolic equations...
    • 28. Messaoudi, S.A., Said-Houari, B., Tatar, N.-E.: Global existence and asymptotic behavior for a fractional differential equation. Appl....
    • 29. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
    • 30. Mitidieri, E., Pohozaev, S.I.: A priori estimates and blow-up of solutions to non-linear partial differential equations and inequalities....
    • 31. Nasir, J., Dokuyucu, M.A., Akdemir, A.O.: New variants of Hermite–Hadamard type inequalities via generalized fractional operator for differentiable...
    • 32. Oldham, K.B., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Elsevier,...
    • 33. Ozarslan, R., Ercan, A., Bas, E.: Novel fractional models compatible with real world problems. Fractal Fract. 3(2), 1–12 (2019)
    • 34. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, toMethods...
    • 35. Rashid, M., Kalsoom, A., Ghaffar, A., Inc, M., Sene, N.: A Multiple fixed point result for(θ,φ,ψ)-type contractions in the partially ordered...
    • 36. Sarıkaya, M.Z., Bili¸sik, C.C.: Opial–Jensen and functional inequalities for convex functions. J. Frac. Calc. Nonlinear Syst. 3(2), 27–36...
    • 37. Sene, N.: Fundamental results about the fractional integro-differential equation described with Caputo derivative. J. Funct. Sp. 2022,...
    • 38. Tariq, M., Soubhagya, K.S., Nasir, J., Awan, S.K.: Some Ostrowski type integral inequalities using hypergeometric functions. J. Fract....
    • 39. Tatar, N.-E.: Non-existence results for a fractional problem arising in thermal diffusion in fractal media. Chaos Solitons Fractals 36,...
    • 40. Tatar, N.-E.: Existence results for an evolution problem with fractional nonlocal conditions. Comput. Math. Appl. 60, 2971–2982 (2010)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno