Ir al contenido

Documat


Well-Posedness of Mild Solutions for the Fractional Navier–Stokes Equations in Besov Spaces

  • Xuan-Xuan Xi [1] ; Yong Zhou [2] ; Mimi Hou [3]
    1. [1] Xiangtan University

      Xiangtan University

      China

    2. [2] Macau University of Science and Technology

      Macau University of Science and Technology

      RAE de Macao (China)

    3. [3] Huaibei Normal University

      Huaibei Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 1, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper addresses the existence and uniqueness of mild solution for fractional Navier–Stokes equation in the homogeneous Besov spaces. The existence and uniqueness of the global mild solution with small initial data is established. The results on existence and uniqueness of the local mild solution for arbitrary initial data are also studied. Meanwhile, we obtain properties about the regularity and decay of mild solutions. These conclusions are mainly based on the fixed point theorems, the implicit function theorem on Banach spaces and the properties of Mittag–Leffler functions.

  • Referencias bibliográficas
    • 1. Varnhorn, W.: The Stokes Equations. Akademie Verlag, Berlin (1994)
    • 2. Cannone, M.: Ondelettes. Paraproduits et Navier–Stokes, Diderot Editeur (1995)
    • 3. Kato, T.: Strong L p-solutions of the Navier–Stokes equation in Rm, with applications to weak solutions. Math. Z. 187, 471–480 (1984)
    • 4. Taylor, M.E.: Analysis on Morrey spaces and applications to Navier–Stokes equation. Commun. Partial Differ. Equ. 17, 1407–1456 (1992)
    • 5. Cannone, M., Planchon, F.: Self-similar solutions for Navier–Stokes equations in R3. Commun. Partial Differ. Equ. 21, 179–194 (1996)
    • 6. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)
    • 7. Weissler, F.B.: The Navier–Stokes initial value problem in L p. Arch. Ration. Mech. Anal. 74, 219–230 (1980)
    • 8. Carpio, A.: Large-time behavior in incompressible Navier–Stokes equations. SIAM J. Math. Anal. 27, 449–475 (1996)
    • 9. Bae, H.-O., Jin, B.J.: Upper and lower bounds of temporal and spatial decays for the Navier–Stokes equations. J. Differ. Equ. 209, 365–391...
    • 10. Kozono, H., Shimizu, S.: Strong solutions of the Navier–Stokes equations based on the maximal Lorentz regularity theorem in Besov spaces....
    • 11. Kozono, H., Okada, A., Shimizu, S.: Characterization of initial data in the homogeneous Besov space for solutions in the Serrin class...
    • 12. Knightly, G.H.: A Cauchy Problem for the Navier–Stokes equations in Rn. SIAM J. Math. Anal. 3, 506–511 (1972)
    • 13. Heck, H., Kim, H., Kozono, H.: Weak solutions of the stationary Navier–Stokes equations for a viscous incompressible fluid past an obstacle....
    • 14. Zhai, X.P., Li, Y.S., Zhou, F.J.: Global large solutions to the three dimensional compressible Navier– Stokes equations. SIAM J. Math....
    • 15. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific Publishing Co., Inc, River Edge, NJ (2000)
    • 16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics...
    • 17. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)
    • 18. Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Academic Press (2016)
    • 19. Hornung, G., Berkowitz, B., Barkai, N.: Morphogen gradient formation in a complex environment: an anomalous diffusion model. Phys. Rev....
    • 20. de Carvalho-Neto, P.M., Planas, G.: Mild solutions to the time fractional Navier–Stokes equations in RN . J. Differ. Equ. 259, 2948–2980...
    • 21. Zhou, Y., Peng, L.: On the time-fractional Navier–Stokes equations. Comput. Math. Appl. 73, 874–891 (2017)
    • 22. Zhou, Y., Peng, L.: Weak solutions of the time-fractional Navier–Stokes equations and optimal control. Comput. Math. Appl. 73, 1016–1027...
    • 23. Zhou, Y., Peng, L., Huang, Y.Q.: Existence and Hölder continuity of solutions for time-fractional Navier–Stokes equations. Math. Methods...
    • 24. Wang, Y.J., Liang, T.T.: Mild solutions to the time fractional Navier–Stokes delay differential inclusions. Discrete Contin. Dyn. Syst....
    • 25. Zheng, R.M., Jiang, X.Y.: Spectral methods for the time-fractional Navier–Stokes equation. Appl. Math. Lett. 91, 194–200 (2019)
    • 26. Xi, X.-X., Hou, M.M., Zhou, X.-F., Wen, Y.H.: Approximate controllability for mild solution of time-fractional Navier–Stokes equations...
    • 27. Kirane, M., Aimene, D., Seba, D.: Local and global existence of mild solutions of time-fractional Navier–Stokes system posed on the Heisenberg...
    • 28. Kozono, H., Shimizu, S.: Navier–Stokes equations with external forces in time-weighted Besov spaces. Math. Nachr. 291, 1781–1800 (2018)
    • 29. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen...
    • 30. Sawano, Y.: Theory of Besov Spaces, Developments in Mathematics. Springer, Singapore (2018)
    • 31. Bergh, J., Löfström, J.: Interpolation Spaces an Introduction, Grundlehren der Mathematische Wisssenshaften. Springer, Berlin (1976)
    • 32. Kaneko, K., Kozono, H., Shimizu, S.: Stationary solution to the Navier–Stokes equations in the scaling invariant Besov space and its regularity....
    • 33. Wang, R.N., Chen, D.H., Xiao, T.J.: Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252, 202–235...
    • 34. Kozono, H., Okada, A., Shimizu, S.: Necessary and sufficient condition on initial data in the Besov space for solutions in the Serrin...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno