Ir al contenido

Documat


The Central Limit Theorem for Markov Processes that are Exponentially Ergodic in the Bounded-Lipschitz Norm

  • Dawid Czapla [1] ; Katarzyna Horbacz [1] ; Hanna Wojewódka-Sciazko [1]
    1. [1] University of Silesia

      University of Silesia

      Katowice, Polonia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 1, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we establish a version of the central limit theorem for Markov–Feller continuous time processes (with a Polish state space) that are exponentially ergodic in the bounded-Lipschitz distance and enjoy a continuous form of the Foster–Lyapunov condition. As an example, we verify the assumptions of our main result for a specific piecewise-deterministic Markov process, whose deterministic component evolves according to continuous semiflows, switched randomly at the jump times of a Poisson process.

  • Referencias bibliográficas
    • 1. Benaïm,M., Le Borgne, S.,Malrieu, F., Zitt, P.-A.: Quantitative ergodicity for some switched dynamical systems. Electron. Commun. Probab....
    • 2. Benaïm, M., Le Borgne, S., Malrieu, F., Zitt, P.-A.: Qualitative properties of certain piecewise deterministic Markov processes. Ann. Inst....
    • 3. Bhattacharya, R.N.: On the functional central limit theorem and the law of the iterated logarithm for Markov processes. Wahrscheinlichkeitstheorie...
    • 4. Billingsley, P.: Probability and Measure, 2nd edn. Wiley, New York (1986)
    • 5. Blumenthal, R.M., Getoor, R.K.: Markov processes and potential theory. In: Pure and Applied Mathematics. Academic Press (1968)
    • 6. Bogachev, V.I.: Measure Theory, vol. II. Springer-Verlag, Berlin (2007)
    • 7. Brown, B.M.: Martingale central limit theorems. Ann. Math. Stat. 42(1), 59–66 (1971)
    • 8. Cloez, B., Hairer, M.: Exponential ergodicity for Markov processes with random switching. Bernoulli 21(1), 505–536 (2015)
    • 9. Czapla, D., Horbacz, K., Wojewódka-Scia ´ ˛˙zko, H.: Ergodic properties of some piecewise-deterministic Markov process with application...
    • 10. Czapla, D., Horbacz, K., Wojewódka-Scia ´ ˛˙zko, H.: A useful version of the central limit theorem for a general class of Markov chains....
    • 11. Czapla, D., Horbacz, K., Wojewódka-Scia ´ ˛˙zko, H.: The Strassen invariance principle for certain nonstationary Markov-Feller chains....
    • 12. Czapla, D., Horbacz, K., Wojewódka-Scia ´ ˛˙zko, H.: Exponential ergodicity in the bounded-Lipschitz distance for some piecewise-deterministic...
    • 13. Czapla, D., Kubieniec, J.: Exponential ergodicity of some Markov dynamical systems with application to a Poisson driven stochastic differential...
    • 14. Derriennic, Y., Lin, M.: The central limit theorem for Markov chains with normal transition operators, started at a point. Probab. Theory...
    • 15. Dudley, R.: Convergence of Baire measures. Studia Math. 27, 251–268 (1966)
    • 16. Ethier, N.E., Kurtz, T.G.: Markov Processes. Characterization and Convergence. Wiley, Hoboken, New Jersey (1986)
    • 17. Gordin, M.I., Lifšic, B.A.: Central limit theorem for stationary Markov processes. Dokl. Akad. Nauk SSSR 239(4), 766–767 (1978)
    • 18. Gordin, M.I., Lifšic, B.A.: A remark about a Markov process with normal transition operator. In Third Vilnius Conference on Probability...
    • 19. Gulgowski, J., Hille, S.C., Szarek, T., Ziemla ´nska, M.A.: Central limit theorem for some non-stationary Markov chains. Stud. Math. 246,...
    • 20. Hairer, M.: Exponential mixing properties of stochastic PDEs through asymptotic coupling. Probab. Theory Related Fields 124, 345 (2002)
    • 21. Heil, C.: Introduction to Real Analysis. Springer (2019)
    • 22. Holzmann, H.: The central limit theorem for stationary Markov processes with normal generator–with applications to hypergroups. Stochastics...
    • 23. Ito, K., Kappel, F.: Evolution Equations and Approximations. Advances in Mathematics for Applied Sciences, vol. 61. World Scientific,...
    • 24. Jin, R., Tan, A.: Central limit theorems for Markov chains based on their convergence rates in Wasserstein distance. Preprint available...
    • 25. Kapica, R., Sle ´ ˛czka, M.: Random iteration with place dependent probabilities. Probab. Math. Statist. 40(1), 119–137 (2020)
    • 26. Kipnis, C., Varadhan, S.R.S.: Central limit theorem for additive functionals of reversible Markov processes and applications to simple...
    • 27. Komorowski, T., Peszat, S., Szarek, T.: Passive tracer in a flow corresponding to two-dimensional stochastic Navier-stokes equations....
    • 28. Komorowski, T., Walczuk, A.: Central limit theorem for Markov processes with spectral gap in the Wasserstein metric. Stoch. Proc. Appl....
    • 29. Krengel., U.: Ergodic theorems. With a supplement by Antoine Brunel. De Gruyter Studies in Mathematics, 6. Walter de Gruyter & Co.,...
    • 30. Lasota, A.: From fractals to stochastic differential equations. In P. Garbaczewski, M. Wolf, and A. Weron, editors, Chaos – The Interplay...
    • 31. Lévy, P.: Propriétés asymptotiques des sommes de variables indépendantes ou enchainées. Journal des mathématiques pures et appliquées...
    • 32. Loève, M.: Probability Theory 1, 4th edn. Springer-Verlag, New York (1977)
    • 33. Maxwell, M., Woodroofe, M.: Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28, 713–724 (2000)
    • 34. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer-Verlag, Berlin, Heidelberg, New York (1993)
    • 35. Olla, S., Landim, C., Komorowski, T.: Fluctuations in Markov Processes. Time Symmetry and Martingale Approximation. Springer, Berlin,...
    • 36. Sharpe, M.: General Theory of Markov Processes Pure and Applied Mathematics, vol. 133. Academic Press (1988)
    • 37. Sle ´ ˛czka, M.: The rate of convergence for iterated function systems. Stud. Math. 205, 201–214 (2011)
    • 38. Walters, P.: An introduction to ergodic theory. In: Graduate Texts in Mathematics, vol. 79. SpringerVerlag, Berlin, Heidelberg, New York...
    • 39. Wojewódka, H.: Exponential rate of convergence for some Markov operators. Stat. Probab. Lett. 83(10), 2337–2347 (2013)
    • 40. Worm, D.T.H.: Semigroups on spaces of measures. Leiden University (PhD thesis), Leiden, The Netherlands, (2010)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno