Ir al contenido

Documat


Existence of Solutions for a Coupled System of Nonlinear Implicit Differential Equations Involving %-Fractional Derivative with Anti Periodic Boundary Conditions

  • Madeaha Alghanmi [1] ; Ravi P. Agarwal [2] ; Bashir Ahmad [1]
    1. [1] King Abdulaziz University

      King Abdulaziz University

      Arabia Saudí

    2. [2] Texas A& M University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 1, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper is concerned with a new class of coupled implicit systems involving - fractional derivatives of different orders and anti periodic boundary conditions. We first convert the given implicit problem into a fixed point problem and then apply the fixed point theorems due to Krasnoselskii and Banach to establish the existence and uniqueness of its solutions. Examples are given for the illustration of the main results.

  • Referencias bibliográficas
    • 1. Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1−D fractional order diffusion equations. Math. Comp. 87, 2273–2294 (2018)
    • 2. Wang, H., Zheng, X.: Well posedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475,...
    • 3. Zheng, X., Wang, H.: An error estimate of a numerical approximation to a hidden-memory variableorder space-time fractional diffusion equation....
    • 4. Ding, Y., Wang, Z., Ye, H.: Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Contr. Sys. Techn. 20, 763–769...
    • 5. Javidi, M., Ahmad, B.: Dynamic analysis of time fractional order phytoplankton-toxic phytoplanktonzooplankton system. Ecol. Modell. 318,...
    • 6. Li, P., Gao, R., Xu, C., Li, Y., Akgul, A., Baleanu, D.: Dynamics exploration for a fractional-order delayed zooplankton-phytoplankton...
    • 7. Ali, M.S., Narayanan, G., Shekher, V., Alsaedi, A., Ahmad, B.: Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued...
    • 8. Xu, Y., Li, Y., Li, W.: Adaptive finite-time synchronization control for fractional-order complex-valued dynamical networks with multiple...
    • 9. Ou, W., Xu, C., Cui, Q., Liu, Z., Pang, Y., Farman, M., Ahmad, S., Zeb, A.: Mathematical study on bifurcation dynamics and control mechanism...
    • 10. Xu, Y., Li, W.: Finite-time synchronization of fractional-order complex-valued coupled systems. Phys. A 549, 123903 (2020)
    • 11. Zhang, F., Chen, G., Li, C., Kurths, J.: Chaos synchronization in fractional differential systems. Phil. Trans. R. Soc. A 371, 201201553...
    • 12. Fallahgoul, H.A., Focardi, S.M., Fabozzi, F.J.: Fractional Calculus and Fractional Processes with Applications to Financial Economics....
    • 13. Ali, Z., Rabiei, F., Hosseini, K.: A fractal-fractional-order modified predator-prey mathematical model with immigrations. Math. Comput....
    • 14. Ahmad, B., Ntouyas, S.K.: Nonlocal Nonlinear Fractional-Order Boundary Value Problems. World Scientific, Singapore (2021)
    • 15. Ben-Avraham, D., Havlin, S.: Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge (2000)
    • 16. Deshpande, A.S., Daftardar-Gejji, V.: On disappearance of chaos in fractional systems. Chaos Solitons Fractals 102, 119–126 (2017)
    • 17. Wang, S., Xu, M.: Axial Couette flow of two kinds of fractional viscoelastic fluids in an annulus. Nonlinear Anal. Real World Appl. 10,...
    • 18. Xu, L., Chu, X., Hu, H.: Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses....
    • 19. He, D., Xu, L.: Exponential stability of impulsive fractional switched systems with time delays In: IEEE Transactions on Circuits and...
    • 20. Henderson, J., Luca, R., Tudorache, A.: On a system of fractional differential equations with coupled integral boundary conditions. Fract....
    • 21. Hristova, S., Agarwal, R., O’Regan, D.: Explicit solutions of initial value problems for systems of linear Riemann-Liouville fractional...
    • 22. Guendouz, C., Lazreg, J.E., Nieto, J.J., Ouahab, A.: Existence and compactness results for a system of fractional differential equations....
    • 23. Ahmad, B., Hamdan, S., Alsaedi, A., Ntouyas, S.K.: On a nonlinear mixed-order coupled fractional differential system with new integral...
    • 24. Luca, R.: On a system of fractional differential equations with p-Laplacian operators and integral boundary conditions. Rev. Roum. Math....
    • 25. Kang, P.: Positive solutions for a singular system of nonlinear fractional differential equations. Stud. Sci. Math. Hungar. 59, 183–195...
    • 26. Nyamoradi, N., Ahmad, B.: Generalized fractional differential systems with Stieltjes boundary conditions. Qual. Theory Dyn. Syst. 22,...
    • 27. Kamsrisuk, N., Ntouyas, S.K., Ahmad, B., Samadi, A., Tariboon, J.: Existence results for a coupled system of (k,ψ)-Hilfer fractional differential...
    • 28. Ma, L., Wu, B.: On the fractional Lyapunov exponent for Hadamard-type fractional differential system. Chaos 33, 013117, 9 (2023)
    • 29. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics...
    • 30. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
    • 31. Sousa, J., da Vanterler, C., de Oliveira, E.: Capelas: On the ψˆ -Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60,...
    • 32. Agarwal, R., Hristova, S., O’Regan, D.: Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential...
    • 33. Nieto, J.J.: Fractional Euler numbers and generalized proportional fractional logistic differential equation. Fract. Calc. Appl. Anal....
    • 34. Kirane, M., Abdeljabbar, A.: Nonexistence of global solutions of systems of time fractional differential equations posed on the Heisenberg...
    • 35. Wongcharoen, A., Ntouyas, S.K., Wongsantisuk, P., Tariboon, J.: Existence results for a nonlocal coupled system of sequential fractional...
    • 36. Kucche, K.D., Mali, A.D.: On the nonlinear (k,ψ)-Hilfer fractional differential equations. Chaos Solitons Fractals 152, 111335 (2021)
    • 37. Agarwal, R.P., Assolami, A., Alsaedi, A., Ahmad, B.: Existence results and Ulam-Hyers stability for a fully coupled system of nonlinear...
    • 38. Kiataramkul, C., Ntouyas, S.K., Tariboon, J.: Existence results for ψ-Hilfer fractional integrodifferential hybrid boundary value problems...
    • 39. Laadjal, Z., Jarad, F.: Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential...
    • 40. Cen, Z., Liu, L.-B., Huang, J.: A posteriori error estimation in maximum norm for a two-point boundary value problem with a Riemann-Liouville...
    • 41. Iskenderoglu, G., Kaya, D.: Symmetry analysis of initial and boundary value problems for fractional differential equations in Caputo sense....
    • 42. Huang, H., Zhao, K., Liu, X.: On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses....
    • 43. Zhao, K.: Existence, stability and simulation of a class of nonlinear fractional Langevin equations involving nonsingular Mittag-Leffler...
    • 44. Zhao, K.: Existence and UH-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation...
    • 45. Alsaedi, A., Alghanmi, M., Ahmad, B., Alharbi, B.: Uniqueness results for a mixed p-Laplacian boundary value problem involving fractional...
    • 46. Laledj, N., Salim, A., Lazreg, J.E., Abbas, S., Ahmad, B., Benchohra, M.: On implicit fractional q-difference equations: analysis and...
    • 47. Bouriah, S., Benchohra, M., Nieto, J.J., Zhou, Y.: Ulam stability for nonlinear implicit differential equations with Hilfer-Katugampola...
    • 48. Salim, A., Benchohra, M., Graef, J.R., Lazreg, J.E.: Initial value problem for hybrid psi-Hilfer fractional implicit differential equations....
    • 49. Vivek, D., Elsayed, E.M., Kanagarajan, K.: Attractivity of implicit differential equations with composite fractional derivative. Georg....
    • 50. Guo, X., Zeng, H., Han, J.: Existence of solutions for implicit fractional differential equations with p-Laplacian operator and anti-periodic...
    • 51. Jiang, D., Bai, C.: Existence results for coupled implicit ψ-Riemann-Liouville fractional differential equations with nonlocal conditions....
    • 52. Krasnoselskii, M.A.: Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 10, 123–127 (1955)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno