Ir al contenido

Documat


Ground-State Solutions to a Hartree–Fock Type System with a 3-Lower Nonlinearity

  • Zushun Min [1] ; Yuhua Li [1] ; Xiaoli Zhu [1]
    1. [1] Shanxi University

      Shanxi University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 1, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we achieve a ground state to a Hartree–Fock type system having an external potential and 3-lower nonlinearity. An interesting finding is that 3-order power-type nonlinearity could be controlled by the Coulomb interaction.

  • Referencias bibliográficas
    • 1. Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on RN . Commun. Partial Differ. Equ....
    • 2. Bokanowski, O., López, J.L., Soler, J.: On an exchange interaction model for quantum transport: the Schrödinger–Poisson–Slater system....
    • 3. Bokanowski, O., Mauser, N.J.: Local approximation for the Hartree–Fock exchange potential: a deformation approach. Math. Models Methods...
    • 4. Costa, D.G.: On a class of elliptic systems in RN . Electron. J. Differ. Equ. pages No. 07, approx. 14 pp (1994)
    • 5. d’Avenia, P., Maia, L., Siciliano, G.: Hartree–Fock type systems: existence of ground states and asymptotic behavior. J. Differ. Equ. 335,...
    • 6. Jiang, Y., Wei, N., Wu, Y.: Multiple solutions for the Schrödinger–Poisson equation with a general nonlinearity. Acta. Math. Sci. Ser....
    • 7. Lions, P.-L.: Some remarks on Hartree equation. Nonlinear Anal. 5(11), 1245–1256 (1981)
    • 8. Lions, P.-L.: Solutions of Hartree–Fock equations for Coulomb systems. Commun. Math. Phys. 109(1), 33–97 (1987)
    • 9. Mauser, N.J.: The Schrödinger–Poisson-Xα equation. Appl. Math. Lett. 14(6), 759–763 (2001)
    • 10. Omana, R.W., Willem, M.: Homoclinic orbits for a class of Hamiltonian systems. Differ. Integral Equ. 5(5), 1115–1120 (1992)
    • 11. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237(2), 655–674 (2006)
    • 12. Ruiz, D.: On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases. Arch. Ration. Mech. Anal. 198(1),...
    • 13. Zhang, J., Zhang, W., R˘adulescu, V.D.: Double phase problems with competing potentials: concentration and multiplication of ground states....
    • 14. Zhang, W., Zhang, J., R˘adulescu, V.D.: Concentrating solutions for singularly perturbed double phase problems with nonlocal reaction....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno