Ir al contenido

Documat


Least Energy Solutions of the Schrödinger–Kirchhoff Equation with Linearly Bounded Nonlinearities

  • Yanyan Liu [1] ; Leiga Zhao [1]
    1. [1] Beijing Technology and Business University

      Beijing Technology and Business University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 1, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we consider the following Schrödinger–Kirchhoff equation − a + b RN |∇u| 2 dx u + V(x)u = f (x, u), in RN , where N ≥ 3, a and b are positive parameters, V(x) is a positive and continuous potential. Under some suitable assumptions on the nonlinearity f (x, u) which allow it is linearly bounded at infinity, the existence of least energy solutions and their asymptotic behavior as b → 0 are established via variational methods. The nonexistence of nontrivial solutions is also established for large b.

  • Referencias bibliográficas
    • 1. Ambrosio, V.: Concentration phenomena for a class of fractional Kirchhoff equations in RN with general nonlinearities. Nonlinear Anal....
    • 2. Azzollini, A.: The elliptic Kirchhoff equation in RN perturbed by a local nonlinearity. Diff. Integral Equ. 25, 543–554 (2012)
    • 3. Azzollini, A., d’Avenia, P., Pomponio, A.: Multiple critical points for a class of nonlinear functionals. Ann. Mat. Pura. Appl. 190, 507–523...
    • 4. Batista, A.M., Furtado, M.F.: Existence of solution for an asymptotically linear Schrödinger-Kirchhoff equation. Potential Anal. 48, 609–619...
    • 5. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I, II. Arch. Rational Mech. Anal. 82, 313–345 (1983)
    • 6. Chen, J., Li, Y.: Existence and concentration of ground state solutions for a critical Kirchhoff type equation in R2. Differ. Integral...
    • 7. Chen, M.Y., Li, Q.: Multi-peak solutions of a type of Kirchhoff equations with critical exponent. Complex Var. Elliptic 66, 1380–1398 (2021)
    • 8. Cheng, K., Wang, L.: Nodal solutions for the Kirchhoff-Schrödinger-Poisson system in R3. AIMS Math. 7, 16787–16810 (2022)
    • 9. Chipot, M., Lovat, B.: Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal. 30, 4619–4627 (1997)
    • 10. Deng, Y.B., Peng, S.J., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3. J. Funct....
    • 11. Duan, Y., Tang, C.L.: Multiple solutions for the asymptotically linear Kirchhoff type equations on RN . Int. J. Differ. Equat. 2016, 1–9...
    • 12. Eisley, G.: Nonlinear vibrations of beams and rectangular plates. Z. Anger. Math. Phys. 15, 167–175 (1964)
    • 13. Figueiredo, G., Ikoma, N., Junior, J.: Existence and concentration result for the Kirchhoff type equations with general nonlinearities....
    • 14. Figueiredo, G., Vetro, C.: The existence of solutions for the modified (p(x), q(x))-Kirchhoff equation. Electron J. Qual. Theo. 39, 1–16...
    • 15. Fuˇcik, S.: Boundary value problems with jumping nonlinearities. Cas. Pˇ ˇ est. Mat. 101, 69–87 (1976)
    • 16. He, X.M., Zou, W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3. J. Differ. Equ. 252, 1813–1834...
    • 17. Jia, H.F.: Ground state solutions for the nonlinear Kirchhoff type equations with lower term. J. Math. Phys. 61, 111506 (2020)
    • 18. Gu, G.Z., Yang, X.Y., Yang, Z.P.: Infinitely many sign-changing solutions for nonlinear fractional Kirchhoff equations. Appl. Anal. 101,...
    • 19. Jia, H.F., Luo, X.: Existence and concentrating behavior of solutions for Kirchhoff type equations with steep potential well. J. Math....
    • 20. Ji, C., Fang, F., Zhang, B.: A multiplicity result for asymptotically linear Kirchhoff equations. Adv. Nonlinear Anal. 8, 267–277 (2019)
    • 21. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)
    • 22. Li, C., Li, S.J., Liu, Z.L., Pan, J.Z.: On the Fuˇcik spectrum. J. Differ. Equ. 244, 2498–2528 (2008)
    • 23. Li, Q., Teng, K.M., Wu, X.: Ground states for Kirchhoff-type equations with critical growth. Commun. Pur. Appl. Anal. 17, 2623–2638 (2018)
    • 24. Li, Y.H., Li, F.Y., Shi, J.P.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ....
    • 25. Li, S., Liang, S., Repov, D.D.: On critical exponential Kirchhoff systems on the Heisenberg group. Rend. Circ. Mat. Palermo II. Ser. (2022)....
    • 26. Li, F.Y., Rong, T., Liang, Z.P.: Fuˇcik spectrum for the Kirchhoff-type problem and applications. Nonlinear Anal. 182, 280–302 (2019)
    • 27. Li, G.B., Ye, H.Y.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3. J. Differ. Equ. 257,...
    • 28. Li, L., Sun, J.J.: Existence and multiplicity of solutions for the Kirchhoff equations with asymptotically linear nonlinearities. Nonlinear...
    • 29. Liang, S.H., Pucci, P., Zhang, B.L.: Multiple solutions for critical Choquard-Kirchhoff type equations. Adv. Nonlinear Anal. 10, 400–419...
    • 30. Liu, Z.L., Su, J.B., Weth, T.: Compactness results for Schrödinger equations with asymptotically linear terms. J. Differ. Equ. 231, 501–512...
    • 31. Lions, J.L.: On some questions in boundary value problems of mathematical physics, in: Contemporary developments in continuum mechanics...
    • 32. Liu, Z.S., Guo, S.J.: Positive solutions for asymptotically linear Schrödinger-Kirchhoff-type equations. Math. Methods Appl. Sci. 37,...
    • 33. Mao, A.M., Zhang, Z.T.: Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition. Nonlinear Anal. 70,...
    • 34. Nie, J.J.: Existence and multiplicity of nontrivial solutions for a calss of Schrödinger-Kirchhoff-type equations. J. Math. Anal. Appl....
    • 35. Perera, K., Zhang, Z.T.: Nontrivial solutions of Kirchhoff-type problems via the Yang-index. J. Differ. Equ. 221, 246–255 (2006)
    • 36. Pucci, P., Xiang, M.Q., Zhang, B.L.: Existence and multiplicity of entire solutions for fractional pKirchhoff equations. Adv. Nonlinear...
    • 37. R˘adulescu, V.D., Vetro, C.: Anisotropic Navier Kirchhoff problems with convection and Laplacian dependence. Math Meth Appl Sci. 46, 461–478...
    • 38. Shen, Z.P., Yu, J.S.: On positive least energy solutions for the nonlinear Kirchhoff type equations in R3. Appl. Anal. 99, 2137–2149 (2020)
    • 39. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. 7, 447–526 (1982)
    • 40. Sun, J.T., Wang, K.H., Wu, T.-F.: On indefinite Kirchhoff-type equations under the combined effect of linear and superlinear terms. J....
    • 41. Tang, X.H., Cheng, B.T.: Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differ. Equ. 261, 2384–2402...
    • 42. Wang, L.L., Han, Z.Q.: Multiple small solutions for Kirchhoff equation with local sublinear nonlinearities. Appl. Math. Lett. 59, 31–37...
    • 43. Wang, Z.P., Zhou, H.S.: Positive solution for a nonlinear stationary Schrödinger-Poisson system in R3. Discrete Contin. Dyn. Syst. 16,...
    • 44. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)
    • 45. Wu, Y., Liu, S.B.: Existence and multiplicity of solutions for asymptotically linear SchrödingerKirchhoff equations. Nonlinear Anal. RWA....
    • 46. Wu, Q., Wu, X.-P., Tang, C.-L.: Existence of positive solutions for the nonlinear Kirchhoff type equations in R3. Qual. Theor. Dyn. Syst....
    • 47. Xiang, M.Q., Zhang, B.L., Radulescu, V.D.: Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional...
    • 48. Zhang, F.B., Du, M.: Existence and asymptotic behavior of positive solutions for Kirchhoff type problems with steep potential well. J....
    • 49. Zhang, B.L., Radulescu, V.D., Wang, L.: Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian....
    • 50. Zhu, X.C., Wang, C.J., Xue, Y.F.: Constraint minimizers of Kirchhoff-Schrödinger energy functionals with L2-subcritical perturbation....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno