Ir al contenido

Documat


Infinitely Many Nodal Solutions for Kirchhoff-Type Equations with Non-odd Nonlinearity

  • Fuyi Li [1] ; Cui Zhang [1] ; Zhanping Liang [1]
    1. [1] Shanxi University

      Shanxi University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 1, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this study, we investigate the existence of infinitely many radial sign-changing solutions with nodal properties for a class of Kirchhoff-type equations possessing non-odd nonlinearity. By combining variational methods and analysis techniques, we prove that for any positive integer k, the equation has a radial solution that changes signs exactly k times. Furthermore, we demonstrate that the energy of such solutions is an increasing function of k. Owing to the inherent characteristics of these equations, the methods used herein significantly differ from those used in the existing literature. Particularly, we discover a unified method to obtain infinitely many radial sign-changing solutions with nodal properties for local and nonlocal problems.

  • Referencias bibliográficas
    • 1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Volume 140 of Pure and Applied Mathematics, 2nd edn. Elsevier/Academic Press, Amsterdam...
    • 2. Bartsch, T., Willem, M.: Infinitely many radial solutions of a semilinear elliptic problem on RN . Arch. Rational. Mech. Anal. 124(3),...
    • 3. Cao, D., Zhu, X.-P.: On the existence and nodal character of solutions of semilinear elliptic equations. Acta Math. Sci. Eng. Ed. 8(3),...
    • 4. Chen, B., Ou, Z.-Q.: Sign-changing and nontrivial solutions for a class of Kirchhoff-type problems. J. Math. Anal. Appl. 481(1), 123476...
    • 5. Deng, Y., Peng, S., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhofftype problems in R3. J. Funct. Anal....
    • 6. Figueiredo, G.M., Nascimento, R.G.: Existence of a nodal solution with minimal energy for a Kirchhoff equation. Math. Nachr. 288(1), 48–60...
    • 7. Gao, L., Chen, C., Zhu, C.: Existence of sign-changing solutions for Kirchhoff equations with critical or supercritical nonlinearity. Appl....
    • 8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001)....
    • 9. Guo, H., Tang, R., Wang, T.: Infinitely many nodal solutions with a prescribed number of nodes for the Kirchhoff type equations. J. Math....
    • 10. He, X., Zou, W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3. J. Differ. Equ. 252(2), 1813–1834...
    • 11. Kim, Seunghyeok, Seok, Jinmyoung: On nodal solutions of the nonlinear Schrödinger–Poisson equations. Commun. Contemp. Math. 14(6), 1250041...
    • 12. Kirchhoff, G.R.: Mechanik. Teubner, Leipzig (1883)
    • 13. Li, F., Gao, C., Zhu, X.: Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type nonlinearity....
    • 14. Li, F., Zhu, X., Liang, Z.: Multiple solutions to a class of generalized quasilinear Schrödinger equations with a Kirchhoff-type perturbation....
    • 15. Li, Q., Teng, K., Xian, W.: Ground states for Kirchoff-type equations with critical or supercritical growth. Math. Methods Appl. Sci....
    • 16. Li, Y., Geng, Q.: The existence of nontrivial solution to a class of nonlinear Kirchhoff equations without any growth and Ambrosetti–Rabinowitz...
    • 17. Liang, Z., Li, F., Shi, J.: Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior. Ann....
    • 18. Lions, J.-L.: On some questions in boundary value problems of mathematical physics. In: Contemporary Developments in Continuum Mechanics...
    • 19. Liu, Z., Wang, Z.-Q.: On the Ambrosetti–Rabinowitz superlinear condition. Adv. Nonlinear Stud. 4(4), 563–574 (2004)
    • 20. Liu, Z.,Wang, Z.-Q.: Vector solutions with prescribed component-wise nodes for a Schrödinger system. Anal. Theory Appl. 35(3), 288–311...
    • 21. Mao, A., Zhang, Z.: Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition. Nonlinear Anal. 70(3),...
    • 22. Michel, W.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser, Boston (1996)
    • 23. Miranda, C.: Un’osservazione su un teorema di Brouwer. Boll. Un. Mat. Ital. 2(3), 5–7 (1940)
    • 24. Nehari, Z.: Characteristic values associated with a class of non-linear second-order differential equations. Acta Math. 105, 141–175 (1961)
    • 25. Shuai, W.: Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J. Differ. Equ. 259(4), 1256–1274 (2015)
    • 26. Strauss, W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55(2), 149–162 (1977)
    • 27. Sun, D., Zhang, Z.: Uniqueness, existence and concentration of positive ground state solutions for Kirchhoff type problems in R3. J. Math....
    • 28. Sun, J., Li, L., Cencelj, M., Gabrovšek, B.: Infinitely many sign-changing solutions for Kirchhoff type problems in R3. Nonlinear Anal....
    • 29. Wu, K., Zhou, F.: Nodal solutions for a Kirchhoff type problem in RN . Appl. Math. Lett. 88, 58–63 (2019)
    • 30. Zhang, Z., Perera, K.: Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. Appl. 317(2),...
    • 31. Zhao, J., Liu, X.: Nodal solutions for Kirchhoff equation in R3 with critical growth. Appl. Math. Lett. 102, 106101 (2020)
    • 32. Zhong, X.-J., Tang, C.-L.: The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem. Commun....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno