Ir al contenido

Documat


On a Rumor Propagation Model with Spatial Heterogeneity

  • Mengxin Chen [1] ; Hari Mohan Srivastava [2]
    1. [1] Henan Normal University

      Henan Normal University

      China

    2. [2] University of Victoria, Kyung Hee University, Azerbaijan University, International Telematic University Uninettuno
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 1, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Rumors or wrong information are always spread in different spatial locations by virtue of various available media. Therefore, the propagation ability of rumors or wrong information should be different in different geographical locations. In this paper, we report the dynamical behaviors of a diffusive SI (susceptible-infected) type rumor propagation model in a spatially heterogeneous environment. In view of the fact that rumor-refuting is a common phenomenon in the real world, we introduce this concern in the rumor propagation model. We first derive the properties of uniform boundedness and permanence of the rumor propagation model. These results indicate that the rumor propagation model has at least one rumor-spreading steady state. Thereafter, the asymptotic profiles of the rumor-spreading steady state are reported. We thus find that such rumor-spreading steady state exists if one of the migration rates of the rumor-infected individuals or the rumor-susceptible individuals tends to zero and infinity, respectively. Our theoretical results reveal that this rumor propagation model can admit wealthy dynamical profiles in a spatially heterogeneous environment. Some numerical results are also presented in order to check the theoretical conclusions.

  • Referencias bibliográficas
    • 1. Daley, D.J., Kendall, D.G.: Epidemics and rumours. Nature 204, 1118 (1964)
    • 2. Sahafizadeh, E., Ladani, B.T.: The impact of group propagation on rumor spreading in mobile social networks. Physica A 506, 412–423 (2018)
    • 3. Pastor-Satorras, R., Castellano, C., Mieghem, P.V., et al.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925 (2015)
    • 4. Wang, Y., Wei, Z.C., Cao, J.D.: Epidemic dynamics of influenza-like diseases spreading in complex networks. Nonlinear Dyn. 101, 1801–1820...
    • 5. Jia, F.J., Lv, G.Y., Zou, G.A.: Dynamic analysis of a rumor propagation model with Lévy noise. Math. Methods Appl. Sci. 41, 1661–1673 (2018)
    • 6. Zhang, Y.H., Zhu, J.J.: Dynamics of a rumor propagation model with stochastic perturbation on homogeneous social networks. J. Comput. Nonlinear...
    • 7. Indu, V., Thampi, S.M.: A nature-inspired approach based on forest fire model for modeling rumor propagation in social networks. J. Netw....
    • 8. Myilsamy, K., Kumar, M.S., Kumar, A.S.: Optimal control of a rumor model with group propagation over complex networks. Int. J. Mode. Phys....
    • 9. Dong, S., Huang, Y.C.: A class of rumor spreading models with population dynamics. Commun. Theor. Phys. 70, 795–802 (2018)
    • 10. Tian, Y., Ding, X.J.: Rumor spreading model with considering debunking behavior in emergencies. Appl. Math. Comput. 363, 124599 (2019)
    • 11. Zehmakan, A.N., Galam, S.: Rumor spreading: a trigger for proliferation or fading away. Chaos 30, 073122 (2020)
    • 12. Chen, J., Hu, M.B., Li, M.: Traffic-driven epidemic spreading dynamics with heterogeneous infection rates. Chaos Solit. Fract. 132, 109577...
    • 13. Choi, W., Ahn, I.: Effect of prey-taxis on predator’s invasion in a spatially heterogeneous environment. Appl. Math. Lett. 98, 256–262...
    • 14. Ni, W.J., Shi, J.P., Wang, M.X.: Global stability of spatially nonhomogeneous steady state solution in a diffusive Holling–Tanner predator-prey...
    • 15. Chen, M.X., Wu, R.C.: Dynamics of diffusive nutrient-microorganism model with spatially heterogeneous environment. J. Math. Anal. Appl....
    • 16. Li, S.B., Wu, J.H.: Asymptotic behavior and stability of positive solutions to a spatially heterogeneous predator-prey system. J. Differ....
    • 17. Chen, J., Cao, J.D., Li, M., et al.: Optimizing protection resource allocation for traffic-driven epidemic spreading. Chaos 32, 083141...
    • 18. Tarboush, A.K., Ge, J., Lin, Z.G.: Asymptotic periodicity in a diffusive West Nile virus model in a heterogeneous environment. Int. J....
    • 19. Lou, Y., Wang, B.: Local dynamics of a diffusive predator-prey model in spatially heterogeneous environment. J. Fix. Point Theor. Appl....
    • 20. Zhu, L.H., Huang, X.Y., Liu, Y., Zhang, Z.D.: Spatiotemporal dynamics analysis and optimal control method for an SI reaction-diffusion...
    • 21. Hess, P.: Periodic-Parabolic Boundary Value Problems and Positivity. Longman Scientific & Technical Harlow, New York (1991)
    • 22. Zhu, S.Y., Wang, J.L.: Asymptotic profiles of steady states for a diffusive SIS epidemic model with spontaneous infection and a logistic...
    • 23. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equation of Second Order. Springer, New York (2001)
    • 24. Chen, M.X., Wu, R.C.: Patterns in the predator–prey system with network connection and harvesting policy. Math. Methods Appl. Sci. 46(2),...
    • 25. Chen, M.X., Wu, R.C., Wang, X.H.: Non-constant steady states and Hopf bifurcation of a species interaction model. Commun. Nonlinear Sci....
    • 26. Zhang, J.L., Cui, R.H.: Qualitative analysis on a diffusive SIS epidemic system with logistic source and spontaneous infection in a heterogeneous...
    • 27. Weinberger, H.F.: Invariant sets for weakly coupled parabolic and elliptic systems. Rend. Mat. 8, 295–310 (1975)
    • 28. Le, D.: Dissipativity and global attractors for a class of quasilinear parabolic systems. Commun. Part Differ. Equ. 22, 413–433 (1997)
    • 29. Peng, R., Zhao, X.Q.: A reaction–diffusion SIS epidemic model in a timeperiodic environment. Nonlinearity 25, 1451–1471 (2012)
    • 30. Magal, X.P., Zhao, Q.: Global attractors and steady states for uniformlly persistent dynamical systems. SIAM J. Math. Anal. 37, 251–275...
    • 31. Zhao, X.Q.: Uniform persistent and periodic coexistence states in infinite-dimensional periodic seminows with applications. Can. Appl....
    • 32. Lou, Y., Ni, W.M.: Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 131(1), 79–131 (1996)
    • 33. Chen, M.X., Wu, R.C., Xu, Y.C.: Dynamics of a depletion-type Gierer–Meinhardt model with Langmuir–Hinshelwood reaction scheme. Discrete...
    • 34. Lei, C.X., Li, F.J., Liu, J.: Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment....
    • 35. Du, Y., Peng, R., Wang, M.X.: Effect of a protection zone in the diffusive Leslie predator–prey model. J. Differ. Equ. 246, 3932–3956...
    • 36. Nie, Y.Y., Li, W.Y., Pan, L.M., et al.: Markovian approach to tackle competing pathogens in simplicial complex. Appl. Math. Comput. 417,...
    • 37. Nie, Y.Y., Zhong, X.N., Lin, T., et al.: Pathogen diversity in meta-population networks. Chaos Solit. Fract. 166, 112909 (2023)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno