Ir al contenido

Documat


Fixed points of set-valued mappings in Menger probabilistic metric spaces endowed with an amorphous binary relation

  • Prasad, Gopi [1] ; Deshwal, Sheetal [1] ; Srivastav, Rupesh K. [1]
    1. [1] Dr. Shivanand Nautiyal Government Post Graduate College
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 24, Nº. 2, 2023, págs. 307-322
  • Idioma: inglés
  • DOI: 10.4995/agt.2023.18993
  • Enlaces
  • Resumen
    • In this paper, we prove the existence of fixed point results for set-valued mappings in Menger probabilistic metric spaces equipped with an amorphous binary relation and a Hadžić -type t-norm. For the usability of such findings we present a Kelisky-Rivlin type result for a class of Bernstein type special operators introduced by Deo et. al. [Appl. Math. Comput. 201, (2008), 604-612 ] on the space C([ 0, n/n+1]). In this way, these investigations extend, modify and generalize some prominent recent fixed point results of the existing literature.

  • Referencias bibliográficas
    • A. Alam and M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl. 17, no. 4 (2015), 693-702. https://doi.org/10.1007/s11784-015-0247-y
    • A. Alam, R. George and M. Imdad, Refinements to relation-theoretic contraction principle, Axioms 11, no. 7 (2022), 316. https://doi.org/10.3390/axioms11070316
    • H. Argoubi, M. Jleli and B. Samet, The study of fixed points for multivalued mappings in a Menger probabilistic metric space endowed with...
    • S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations intgrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
    • S. K. Bhandari, D. Gopal and P. Konar, Probabilistic α-min Ciric type contraction results using a control function, AIMS Mathematics 5, no....
    • N. Deo, M. A. Noor and M. A. Siddiqui, On approximation by a class of new Bernstein type operators, Appl. Math. Comput. 201 (2008), 604-612....
    • T. Dinevari and M. Frigon, Fixed point results for multivalued contractions on a metric space with a graph, J. Math. Anal. Appl. 405 (2013),...
    • J.-X. Fang, Fixed point theorems of local contraction mappings on Menger spaces, Appl. Math. Mech. 12 (1991), 363-372. https://doi.org/10.1007/BF02020399
    • J.-X. Fang, A note on fixed point theorems of Hadžić, Fuzzy Sets Syst. 48 (1992), 391-395. https://doi.org/10.1016/0165-0114(92)90355-8
    • J.-X. Fang, Common fixed point theorems of compatible and weakly compatible maps in Menger spaces, Nonlinear Anal. 71 (2009), 1833-1843. https://doi.org/10.1016/j.na.2009.01.018
    • O. Hadžić, Fixed point theorems for multivalued mappings in probabilistic metric spaces, Fuzzy Sets Syst. 88 (1997), 219-226. https://doi.org/10.1016/S0165-0114(96)00072-3
    • O. Hadžić and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic, Dordrecht (2001). https://doi.org/10.1007/978-94-017-1560-7
    • J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), 1359-1373. https://doi.org/10.1090/S0002-9939-07-09110-1
    • T. Kamran, M. Samreen and N. Shahzad, Probabilistic G-contractions, Fixed Point Theory Appl. 2013 (2013), 223. https://doi.org/10.1186/1687-1812-2013-223
    • R. P. Kelisky and T. J. Rivlin, Iterates of Bernstein polynomials, Pac. J. Math. 21 (1967), 511-520. https://doi.org/10.2140/pjm.1967.21.511
    • B. Kolman, R. C. Busby and S. Ross, Discrete mathematical structures, Third Edition, PHI Pvt. Ltd., New Delhi, 2000.
    • S. Lipschutz, Schaum's Outlines of Theory and Problems of Set Theory and Related Topics, McGraw-Hill, New York, (1964).
    • J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations,...
    • S. B. Jr. Nadler, Multivalued contraction mappings. Pac. J. Math. 30 (1969), 475-487. https://doi.org/10.2140/pjm.1969.30.475
    • G. Prasad, Coincidence points of relational ψ-contractions and an application, Afrika Mathematica 32, no. 6-7 (2021), 1475-1490. https://doi.org/10.1007/s13370-021-00913-6
    • G. Prasad, Fixed points of Kannan contractive mappings in relational metric spaces, J. Anal. 29, no. 3 (2021), 669-684. https://doi.org/10.1007/s41478-020-00273-7
    • G. Prasad and H. Işık, On solution of boundary value problems via weak contractions, J. Funct. Spaces 2022 (2022), Article ID 6799205. https://doi.org/10.1155/2022/6799205
    • A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer....
    • B. Samet and M. Turinici, Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications, Commun. Math....
    • B. Schweizer, A. Sklar and E. Thorp, The metrization of statistical metric spaces, Pac. J. Math. 10 (1960), 673-675. https://doi.org/10.2140/pjm.1960.10.673
    • B. Schweizer and Sklar, Probabilistic Metric Spaces, North-Holland, New York (1983).
    • M. Turinici, Fixed points for monotone iteratively local contractions, Demonstr. Math. 19, no. 1 (1986), 171-180.
    • M. Turinici, Ran and Reuring's theorems in ordered metric spaces, J. Indian Math. Soc. 78 (2011), 207-214.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno