Ir al contenido

Documat


Countable networks on Malykhin's maximal topological group

  • Márquez, Edgar [1]
    1. [1] Universidad Autónoma Metropolitana

      Universidad Autónoma Metropolitana

      México

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 24, Nº. 2, 2023, págs. 239-246
  • Idioma: inglés
  • DOI: 10.4995/agt.2023.18517
  • Enlaces
  • Resumen
    • We present a solution to the following problem: Does every countable and non-discrete topological (Abelian) group have a countable network with infinite elements? In fact, we show that no maximal topological space allows for a countable network with infinite elements. As a result, we answer the question in the negative. The article also focuses on Malykhin's maximal topological group constructed in 1975 and establishes some unusual properties of countable networks on this special group G. We show, in particular, that for every countable network N for G, the family of finite elements of N is also a network for G.

  • Referencias bibliográficas
    • A. V. Arhangel'skii and M. G. Tkachenko, Topological Groups and Related Structures, Atlantis Studies in Mathematics, Vol. I, Atlantis...
    • E. K. van Douwen, The Integers and Topology, in: Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, Eds.), Elsevier Science Publ....
    • D. H. Fremlin, Consequences of Martin's Axiom, Cambridge University Press, Cambridge, 1984. https://doi.org/10.1017/CBO9780511896972
    • E. Márquez and M. Tkachenko, D-independent topological groups, Topology Appl. 300 (2021), 107761. https://doi.org/10.1016/j.topol.2021.107761

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno