Ir al contenido

Documat


Smooth fans that are endpoint rigid

  • Hernández-Gutiérrez, Rodrigo [1] ; Hoehn, Logan C. [2]
    1. [1] Universidad Autónoma Metropolitana

      Universidad Autónoma Metropolitana

      México

    2. [2] Nipissing University

      Nipissing University

      Canadá

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 24, Nº. 2, 2023, págs. 407-422
  • Idioma: inglés
  • DOI: 10.4995/agt.2023.17922
  • Enlaces
  • Resumen
    • Let X be a smooth fan and denote its set of endpoints by E(X). Let E be one of the following spaces: the natural numbers, the irrational numbers, or the product of the Cantor set with the natural numbers. We prove that there is a smooth fan X such that E(X) is homeomorphic to E and for every homeomorphism h : X → X , the restriction of h to E(X) is the identity. On the other hand, we also prove that if X is any smooth fan such that E(X) is homeomorphic to complete Erdős space, then X is necessarily homeomorphic to the Lelek fan; this adds to a 1989 result by Włodzimierz Charatonik.

  • Referencias bibliográficas
    • G. Acosta, L. C. Hoehn and Y. Pacheco Juárez, Homogeneity degree of fans, Topology Appl. 231 (2017), 320-328. https://doi.org/10.1016/j.topol.2017.09.002
    • G. Acosta and Y. Pacheco-Juárez, (frac{1}{3})-homogeneous dendrites, Topology Appl. 219 (2017), 55-77. https://doi.org/10.1016/j.topol.2017.01.003
    • A. V. Arhangel'skii and J. van Mill, Topological homogeneity, Recent progress in general topology III, Amsterdam: Atlantis Press, 2014,...
    • J. J. Charatonik, On fans, Dissertationes Math. (Rozprawy Mat.) 54 (1967), 39 pp.
    • W. J. Charatonik, The Lelek fan is unique, Houston J. Math. 15, no. 1 (1989), 27-34.
    • H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fundam. Math. 60 (1967), 241-249. https://doi.org/10.4064/fm-60-3-241-249
    • J. J. Dijkstra and J. van Mill, Characterizing complete Erdős space, Can. J. Math. 61, no. 1 (2009), 124-140. https://doi.org/10.4153/CJM-2009-006-6
    • J. J. Dijkstra and J. van Mill, Erdős space and homeomorphism groups of manifolds, Mem. Am. Math. Soc. no. 979, Providence, RI: American Mathematical...
    • C. Eberhart, A note on smooth fans, Colloq. Math. 20 (1969), 89-90. https://doi.org/10.4064/cm-20-1-89-90
    • P. Erdős, The dimension of the rational points in Hilbert space, Ann. Math. 41, no. (1940), 734-736. https://doi.org/10.2307/1968851
    • K. Kawamura, L. G. Oversteegen and E. D. Tymchatyn, On homogeneous totally disconnected 1-dimensional spaces, Fundam. Math. 150, no. 2 (1996),...
    • A. Lelek, On plane dendroids and their end points in the classical sense, Fund. Math. 49 (1961), 301-319. https://doi.org/10.4064/fm-49-3-301-319
    • S. B. Nadler, Jr., Continuum theory. An introduction, vol. 158, New York: Marcel, 1992.
    • A. J. M. van Engelen, Homogeneous zero-dimensional absolute Borel sets, CWI Tracts, 27. Centrum voor Wiskunde en Informatica. Amsterdam: Mathematisch...
    • F. van Engelen, A. W. Miller and J. Steel, Rigid Borel sets and better quasiorder theory, Logic and combinatorics, Proc. AMS-IMS-SIAM Conf.,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno