Ir al contenido

Documat


Martingales on principal fiber bundles

  • Catuogno, Pedro J. [1] ; Stelmastchuk, Simão Nicolau [2]
    1. [1] Universidade Estadual de Campinas

      Universidade Estadual de Campinas

      Brasil

    2. [2] Universidade Federal do Paraná

      Universidade Federal do Paraná

      Brasil

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 42, Nº. 4, 2023, págs. 1051-1065
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-5893
  • Enlaces
  • Resumen
    • Let P(M,G) be a principal fiber bundle, let ω be a connection form on P(M,G), and consider a projectable connection ∇P on P(M,G).

      The aim of this work is to determine the ∇P -martingales in P(M,G). Our results allow establishing new characterizations of harmonic maps from Riemannian manifolds to principal fiber bundles.

  • Referencias bibliográficas
    • N. Abe and K. Hasewaga, “An affine submersion with horizontal distribution and applications”, Differential Geometry and its Applications,...
    • M. Arnaudon and S. Paycha, “Factorization of semimartingales on principal fibre bundles and the Faddeev-Popov procedure in gauge theories”,...
    • P. Catuogno, “A geometric Itô formula”, Matemática Contemporânea, vol. 33, pp. 85-99, 2007.
    • P. Catuogno and S. Stelmastchuk, “Martingales on frame bundles”, Potential Analysis, vol. 28, pp. 61-69, 2008. https://doi.org/10.1007/s11118-007-9068-y
    • R. Coquereaux and A. Jadczyk, Riemannian Geometry, Fiber Bundles, Kaluza-Klein Theories, and All That. Singapore: World Scientific, 1988.
    • L. Cordero, C. Dodson and M. De León, Differential Geometry of Frames Bundles. Dordrecht: Kluwer Academic Publisher, 1989.
    • M. Emery, Stochastic Calculus in Manifolds. Berlin: Springer, 1989.
    • E. Hsu, Stochastic Analysis on Manifolds. Graduate Studies in Mathematics vol. 38. Providence: American Mathematical Society, 2002.
    • S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol I. New York: Interscience Publishers, 1963.
    • P. Meyer, Géométrie stochastique sans larmes, Séminaire de Probabilités XV, Lecture Notes in Mathematics, vol. 850, pp. 165-207. Berlin: Springer,...
    • B. O’Neill, The fundamental equations of a submersion, Michigan Mathematical Journal, vol. 13, pp. 459-469, 1966.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno