Ir al contenido

Documat


Ergodicity of commuting multioperators and holomorphic multioperators of multiplication

  • Akrym, Abdellah [1] ; El Bakkali, Abdeslam ; Faouzi, Abdelkhalek [1]
    1. [1] Chouaib Doukkali University.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 42, Nº. 4, 2023, págs. 983-1003
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-5790
  • Enlaces
  • Resumen
    • In this paper, the strong ergodic theorems are extended from the case of one bounded operator to the case of commuting multioperators. The authors show that in Grothendieck space with the Dunford-Pettis property, mean ergodic operator, and uniform ergodic operator are the same. We study when multioperators of multiplication on a weighted Banach space of holomorphic multi-functions are power bounded, mean ergodic, or uniformly mean ergodic.

  • Referencias bibliográficas
    • E. Barletta and S. Dragomir, “Vector valued holomorphic functions”, Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie...
    • K. D. Bierstedt and J. Bonet, “Weighted (LB)-spaces of holomorphic functions: V H(G) = V0H(G) and completeness of V0H(G)”, Journal of...
    • K. D. Bierstedt and S. Holtmanns, “An operator representation for weighted spaces of vector valued holomorphic functions”, Results in Mathematics,...
    • J. Bonet, P. Domański, and M. Lindström, “Pointwise multiplication operators on weighted Banach spaces of analytic functions”, Studia Mathematica,...
    • J. Bonet, and W. Ricker, “Mean ergodicity of multiplication operators in weighted spaces of holomorphic functions”, Archiv der Mathematik,...
    • M. Chō and M. Takaguchi, “Boundary points of joint numerical ranges”, Pacific Journal of Mathematics, vol. 95, no. 1, pp. 27-35, 1981. https://doi.org10.2140/PJM.1981.95.27
    • E. Hille, “Remarks on ergodic theorems”, Transactions of the American Mathematical Society, vol. 57, no.2, pp. 246-269, 1945. https://doi.org10.2307/1990205
    • E. Jorda, “Weighted Vector-Valued Holomorphic Functions on Banach Spaces”, Abstract and Applied Analysis, vol. 2013, 2013. doi. 10.1155/2013/501592
    • U. Krengel, Ergodic Theorems. Berlin: Walter de Gruyter, 1985. https://doi.org10.1515/9783110844641
    • M. Lin, “On the uniform ergodic theorem”, Proceedings of the American Mathematical Society, vol. 43, no. 2, pp. 337-340, 1974.
    • H. P. Lotz, “Tauberian theorems for operators on L∞ and similar spaces”, North-Holland Mathematics Studies, vol. 90, pp. 117-133, 1984. https://doi.org10.1016/S0304-0208(08)71470-1
    • H. P. Lotz, “Uniform convergence of operators on L∞ and similar spaces”, Mathematische Zeitschrift, vol. 190, no. 2, pp. 207-220, 1985. https://doi.org10.1007/BF01160459
    • W. Lusky, “On the isomorphism classes of weighted spaces of harmonic and holomorphic functions”, Studia Mathematica, vol. 175, no. 1, pp....
    • W. Lusky, J. Taskinen, “On weighted spaces of holomorphic functions of several variables”, Israel Journal of Mathematics, vol. 176, no. 1,...
    • M. Mbekhta, F. H. Vasilescu, “Uniformly ergodic multioperators”, Transactions of the American Mathematical Society, vol. 347, no. 5, pp. 1847-1854,...
    • V. Müller, Spectral theory of linear operators. Operator Theory Advances and Applications, vol. 139. Basel: Birkhäuser, 2003. https://doi.org10.1007/978-3-7643-8265-0
    • R. K. Singh, J. S. Manhas, “Multiplication operators on weighted spaces of vector-valued continuous functions”, Journal of the Australian...
    • J. L. Taylor, “The analytic functional calculus for several commuting operators”, Acta Mathematica, vol. 125, pp. 1-38, 1970. https://doi.org10.1007/BF02392329

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno