La tarea TESTLINK de IberLEF2023 se centra en la extracción de relaciones de casos clínicos en español y euskera. La tarea consiste en identificar resultados y medidas clínicas y relacionarlos con las pruebas y mediciones de las que se obtuvieron. Tres equipos han participado en la tarea y se han evaluado varios modelos (supervisados) de aprendizaje profundo. Curiosamente, ninguno de los equipos exploró el uso del aprendizaje few-shot. La evaluación muestra que el fine-tuning en el dominio y conjuntos de datos de entrenamiento más grandes mejoran los resultados. De hecho, el hecho de que los modelos supervisados superaran significativamente la baseline basada en el aprendizaje few-shot muestra el papel crucial que aún desempeña la disponibilidad de datos de entrenamiento anotados.
The TESTLINK task conducted at IberLEF2023 focuses on relation extraction from clinical cases in Spanish and Basque. The task consists in identifying clinical results and measures and linking them to the tests and measurements from which they were obtained. Three teams took part in the task and various (supervised) deep learning models were evaluated; interestingly, none of the teams explored the use of few-shot learning. The evaluation shows that in-domain fine-tuning and larger training datasets improve the results. In fact, the fact that supervised models significantly outperformed the baseline based on few-shot learning shows the crucial role still played by the availability of annotated training data.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados