Ir al contenido

Documat


La perplejidad como herramienta para estimar la asignación de nivel de competencia en escritos de una lengua extranjera

  • Autores: Gadea Mata Martínez Árbol académico, Julio Rubio García Árbol académico, María del Pilar Agustín Llach, Jónathan Heras Vicente Árbol académico
  • Localización: Procesamiento del lenguaje natural, ISSN 1135-5948, Nº. 71, 2023, págs. 29-38
  • Idioma: español
  • Títulos paralelos:
    • Perplexity as a tool for the allocation of proficiency levels to utterances written by foreign language learners
  • Enlaces
  • Resumen
    • español

      La asignación de niveles de competencia a escritos producidos por aprendices de una lengua es una tarea altamente subjetiva. Es por esto que el desarrollo de métodos que evalúen escritos de manera automática puede ayudar tanto al profesorado como al alumnado. En este trabajo, hemos explorado dos vías mediante el uso del corpus CAES. Dicho corpus está formado por escritos de aprendices de español y etiquetado con niveles CEFR (hasta el C1). La primera aproximación es un modelo de aprendizaje profundo llamado Deep-ELE que asigna niveles de competencia a las frases. La segunda aproximación llevada a cabo ha consistido en estudiar la perplejidad de las frases de los estudiantes de distintos niveles, para luego clasificarlos en niveles. Ambas aproximaciones han sido evaluadas, y se ha comprobado que pueden usarse de manera exitosa para clasificar frases por niveles. En concreto, el modelo Deep-ELE obtiene una accuracy de 81,3% y un QWK de 0,83. Como conclusión, este trabajo es un paso para entender cómo las herramientas del procesado de lenguaje natural pueden ayudar a las personas que aprenden un segundo idioma.

    • English

      The allocation of proficiency levels to utterances written by foreign language learners is a subjective task. Therefore, the development of methods to automatically evaluate written sentences can help both students and teachers. In this work, we have explored two different approaches to tackle this task by using the corpus CAES, which contains written utterances of learners of Spanish labelled with CEFR levels (up to C1). The first approach is a deep learning model called Deep-ELE which assigns proficiency levels to sentences. The second approach consists in studying the perplexity of sentences written by students of different levels, to later allocate levels to those sentences based on such an analysis. Both approaches have been evaluated, and results confirm that they can be used to successfully classify written sentences into proficiency levels. In particular, the Deep-ELE model reaches an accuracy of 81.3% and a weighted Cohen Kappa of 0.83. As a conclusion, this work is a step towards better understanding how natural language processing methods can help learners of a second language.

  • Referencias bibliográficas
    • Burstein, J., J. Tetreault, y N. Madnani. 2013. The e-rater automated essay scoring system. En Handbook of Automated Essay Evaluation. Routledge,...
    • CAES. 2022. Corpus de aprendices de español (CAES). https://galvan.usc.es/caes/.
    • COE. 2021. CEFR: Common European Framework of Reference for Languages. Council of Europe. https://www.coe.int/en/web/commoneuropean- framework-reference-languages. Cotos,...
    • Devlin, J., M.-W. Chang, K. Lee, y K. Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. En...
    • Ding, H., Q. Zhong, S. Zhang, y L. Yang. 2021. Text difficulty classification by combining machine learning and language features. En The...
    • Foltz, P. W., L. A. Streeter, K. E. Lochbaum, y T. K. Landauer. 2013. Implementation and applications of the Intelligent Essay Assessor. En...
    • Fu, J. 2020. Automatic Proficiency Evaluation of Spoken English by Japanese Learners for Dialogue-Based Language Learning System Based on...
    • Gilliam, W. 2021. Blur: A library that integrates huggingface transformers with version 2 of the fastai framework. https://github.com/ohmeow/blurr.
    • Hamp-Lyons, L., editor. 1991. Assessing second language writing in academic contexts. Ablex.
    • Hancke, J. y D. Meurers. 2013. Exploring CEFR classification for german based on rich linguistic modeling. Learner Corpus Research, páginas...
    • Hao, T., X. Li, Y. He, F. L. Wang, y. Qu. 2022. Recent progress in leveraging deep learning methods for question answering. Neural Computing...
    • Heafield, K. 2023. Kenlm language model toolkit. https://kheafield.com/code/kenlm/. Howard, J. y S. Gugger. 2020. Fastai: A layered API for...
    • Jacobs, H. L., S. A. Zinkgraf, D. R. Wormuth, V. F. Hearfiel, y J. B. Hughey. 1981. Testing ESL Composition: A Practical Approach. English...
    • Jarvis, S., R. Alonso, y S. Crossley. 2019. Native language identification by human judges. En Cross-linguistic influence: From empirical...
    • Jarvis, S. y M. Paquot. 2015. Native language identification. Cambridge University Press.
    • Jurafsky, D. y J. H. Martin. 2021. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics,...
    • Kobayashi, A. y I. Wilson. 2020. Using deep learning to classify english native pronunciation level from acoustic information. En SHS Web...
    • Kouris, P., G. Alexandridis, y A. Stafylopatis. 2021. Abstractive text summarization: Enhancing sequence-to-sequence models using word sense...
    • Lab, T. L. A. 2023. English language learning: Evaluating language knowledge of ell students from grades 8-12. https://www.kaggle.com/competitions/feedbackprize- english-language-learning.
    • Lim, K., J. Song, y J. Park. 2022. Neural automated writing evaluation for korean L2 writing. Natural Language Engineering, páginas 1–23.
    • Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, y V. Stoyanov. 2019. Roberta: A robustly optimized...
    • Malmasi, S., K. Evanini, A. Cahill, J. Tetreault, R. Pugh, C. Hamill, D. Napolitano, y. Qian. 2017. A report on the 2017 native language identification...
    • Metallinou, A. y J. Cheng. 2014. Using deep neural networks to improve proficiency assessment for children english language learners. En Fifteenth...
    • Minaee, S., N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, y J. Gao. 2021. Deep learning–based text classification: a comprehensive...
    • Narayan, S. y C. Gardent. 2020. Deep learning approaches to text production. Synthesis Lectures on Human Language Technologies, 13(1):1–199.
    • Ney, H., U. Essen, y R. Kneser. 1994. On structuring probabilistic dependences in stochastic language modelling. Computer Speech & Language,...
    • Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. K¨opf, E....
    • Polio, C. y H. Yoon. 2020. Exploring multiword combinations as measures of linguistic accuracy in second language writing. En Learner corpora...
    • Santos, R., J. Rodrigues, A. Branco, y R. Vaz. 2021. Neural text categorization with transformers for learning portuguese as a second language....
    • Santucci, V., L. Forti, F. Santarelli, S. Spina, y A. Milani. 2020. Learning to classify text complexity for the italian language using support...
    • Shao, C., Y. Feng, J. Zhang, F. Meng, y J. Zhou. 2021. Sequence-level training for non-autoregressive neural machine translation. Computational...
    • Sharif Razavian, A., H. Azizpour, J. Sullivan, y S. Carlsson. 2014. CNN features off-theshelf: An astounding baseline for recognition. En...
    • Sung, Y.-T., W.-C. Lin, S. B. Dyson, K.- E. Chang, y Y.-C. Chen. 2015. Leveling l2 texts through readability: Combining multilevel linguistic...
    • Takai, K., P. Heracleous, K. Yasuda, y A. Yoneyama. 2020. Deep learning-based automatic pronunciation assessment for second language learners....
    • Tunstall, L., L. von Werra, y T. Wolf. 2022. Natural language processing with transformers. O’Reilly Media, Inc.
    • Weigle, S. C. 2002. Assessing writing. Cambridge University Press.
    • Wolf, T., L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von...
    • Wolfe-Quintero, K., S. Inagaki, y H.-Y. Kim. 1998. Second language development in writing: Measures of fluency, accuracy, and complexity....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno