Ir al contenido

Documat


Minkowski Dimension and Slow–Fast Polynomial Liénard Equations Near Infinity

  • Peter De Maesschalck [1] Árbol académico ; Renato Huzak [1] ; Ansfried Janssens [1] ; Goran Radunovic [2]
    1. [1] University of Hasselt

      University of Hasselt

      Arrondissement Hasselt, Bélgica

    2. [2] University of Zagreb

      University of Zagreb

      Croacia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 4, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In planar slow–fast systems, fractal analysis of (bounded) sequences in R has proved important for detection of the first non-zero Lyapunov quantity in singular Hopf bifurcations, determination of the maximum number of limit cycles produced by slow–fast cycles, defined in the finite plane, etc. One uses the notion of Minkowski dimension of sequences generated by slow relation function. Following a similar approach, together with Poincaré–Lyapunov compactification, in this paper we focus on a fractal analysis near infinity of the slow–fast generalized Liénard equations x˙ = y−n+1 k=0 Bk xk , y˙ = − m k=0 Ak xk . We extend the definition of the Minkowski dimension to unbounded sequences. This helps us better understand the fractal nature of slow–fast cycles that are detected inside the slow–fast Liénard equations and contain a part at infinity.

  • Referencias bibliográficas
    • 1. Benoit, É.: Équations différentielles: relation entrée-sortie. C. R. Acad. Sci. Paris Sér. I. Math. 293(5), 293–296 (1981)
    • 2. Burrell, S.A., Falconer, K.J., Fraser, J.M.: The fractal structure of elliptical polynomial spirals.Monatsh. Math. 199(1), 1–22 (2022)
    • 3. De Maesschalck, P., Dumortier, F.: Time analysis and entry-exit relation near planar turning points. J. Differ. Equ. 215(2), 225–267 (2005)
    • 4. De Maesschalck, P., Dumortier, F., and Roussarie, R.: Canard cycles—from birth to transition, volume 73 of Ergebnisse der Mathematik und...
    • 5. De Maesschalck, P., Huzak, R., Janssens, A., Radunovi´c, G.: Fractal codimension of nilpotent contact points in two-dimensional slow-fast...
    • 6. Dumortier, F., Herssens, C.: Polynomial Liénard equations near infinity. J. Differ. Equ. 153(1), 1–29 (1999)
    • 7. Elezovi´c, N., Županovi´c, V., Žubrini´c, D.: Box dimension of trajectories of some discrete dynamical systems. Chaos Solitons Fractals...
    • 8. Falconer, K.: Fractal Geometry. John Wiley and Sons Ltd, Chichester (1990)
    • 9. Horvat Dmitrovi´c, L., Huzak, R., Vlah, D., Županovi´c, V.: Fractal analysis of planar nilpotent singularities and numerical applications....
    • 10. Huzak, R.: Box dimension and cyclicity of canard cycles. Qual. Theory Dyn. Syst. 17(2), 475–493 (2018)
    • 11. Huzak, R.: Quartic Liénard equations with linear damping. Qual. Theory Dyn. Syst. 18(2), 603–614 (2019)
    • 12. Huzak, R., Crnkovi´c, V., Vlah, D.: Fractal dimensions and two-dimensional slow-fast systems. J. Math. Anal. Appl. 501(2), 21 (2021)
    • 13. Huzak, R., DeMaesschalck, P.: Slow divergence integrals in generalized Liénard equations near centers. Electron. J. Qual. Theory Differ....
    • 14. Huzak, R., Vlah, D.: Fractal analysis of canard cycles with two breaking parameters and applications. Commun. Pure Appl. Anal. 18(2),...
    • 15. Huzak, R., Vlah, D., Žubrini´c, D., Županovi´c, V.: Fractal analysis of degenerate spiral trajectories of a class of ordinary differential...
    • 16. Lapidus, M.L., Radunovi´c, G., Žubrini´c, D.: Fractal zeta functions and fractal drums. Springer Monographs in Mathematics, Springer,...
    • 17. Mardeši´c, P., Resman, M., Županovi´c, V.: Multiplicity of fixed points and growth of ε-neighborhoods of orbits. J. Differ. Equ. 253(8),...
    • 18. Radunovi´c, G., Žubrini´c, D., Županovi´c, V.: Fractal analysis of Hopf bifurcation at infinity. Int. J. Bifurcation Chaos Appl. Sci....
    • 19. Tricot, C.: Curves and fractal dimension. Springer-Verlag, New York. With a foreword by Michel Mendès France, Translated from the 1993...
    • 20. Žubrini´c, D., Županovi´c, V.: Fractal analysis of spiral trajectories of some vector fields in R3. C. R. Math. Acad. Sci. Paris 342(12),...
    • 21. Wu, H., Li, W.: Isochronous properties in fractal analysis of some planar vector fields. Bull. Sci. Math. 134(8), 857–873 (2010)
    • 22. Žubrini´c, D., Županovi´c, V.: Poincaré map in fractal analysis of spiral trajectories of planar vector fields. Bull. Belg. Math. Soc....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno