Ir al contenido

Documat


Takens–Bogdanov Bifurcation for a Ratio-Dependent Predation Interaction Involving Prey-Competition and Predator-Age

  • Peng Yang [1]
    1. [1] Northwest Normal University

      Northwest Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 4, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • A large number of articles have been devoted to the study of age-dependent predation interaction. Most of them concentrate on the existence of the solution and the non-trivial periodic solution. The strength of this text is that we mainly investigate the long-time behavior of the solution for a general ratio-dependent predation interaction involving prey-competition and predator-age in the form of an ODE and a PDE.

      Firstly, we prove that there are some variable values such that this ratio-dependent predation interaction has a unique positive equilibrium age profile with Takens–Bogdanov singularity. Secondly, under fit tiny perturbation, the ratio-dependent predation interaction generates the Takens–Bogdanov bifurcation in a small domain of this positive equilibrium age profile.

  • Referencias bibliográficas
    • 1. Freedman, H.I.: Deterministic mathematical models in population ecology. Biometrics 22(7), 219–236 (1980)
    • 2. Hairston, N.G., Smith, F.E., Slobodkin, L.B.: Community structure, population control, and competition. Am. Nat. 94(879), 421–425 (1960)
    • 3. Rosenzweig, M.L.: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171(3969), 385–387 (1971)
    • 4. Luck, R.F.: Evaluation of natural enemies for biological control: a behavioral approach. Trends Ecol. Evol. 5(6), 196–199 (1990)
    • 5. Akcakaya, H.R., Arditi, R., Ginzburg, L.R.: Ratio-dependent prediction: an abstraction that works. Ecology 76(3), 995–1004 (1995)
    • 6. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Ecology 56(1),...
    • 7. Arditi, R., Ginzburg, L.R.: Coupling in predator–prey dynamics: ratio-dependence. J. Theor. Biol. 139(3), 311–326 (1989)
    • 8. Gutierrez, A.P.: The physiological basis of ratio-dependent predator–prey theory: a metabolic pool model of Nicholson’s blowflies as an...
    • 9. Akcakaya, H.R.: Population cycles of mammals: evidence for a ratio-dependent predation hypothesis. Ecol. Monogr. 62(1), 119–142 (1992)
    • 10. Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations. World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises,...
    • 11. Jost, C., Arino, O., Arditi, R.: About deterministic extinction in ratio-dependent predator–prey models. Bull. Math. Biol. 61(1), 19–32...
    • 12. Hsu, S.B., Hwang, T.W., Kuang, Y.: Global analysis of the Michaelis–Menten-type ratio-dependent predator–prey system. J. Math. Biol. 42(6),...
    • 13. Li, B.T., Kuang, Y.: Heteroclinic bifurcation in the Michaelis–Menten-type ratio-dependent predator– prey system. SIAM J. Appl. Math....
    • 14. Ruan, S.G., Tang, Y.L., Zhang, W.N.: Versal unfoldings of predator–prey systems with ratio-dependent functional response. J. Differ. Equ....
    • 15. Jiang, X., She, Z.K., Feng, Z.S., Zheng, X.L.: Bifurcation analysis of a predator-prey system with ratio-dependent functional response....
    • 16. Jiang, X., She, Z.K., Ruan, S.G.: Global dynamics of a predator–prey system with density-dependent mortality and ratio-dependent functional...
    • 17. Merchant, S.M., Nagata, W.: Selection and stability of wave trains behind predator invasions in a model with non-local prey competition....
    • 18. Abernethy, G.M., McCartney, M., Glass, D.H.: The interaction between predator strategy and prey competition in a pair of multi-predator...
    • 19. Chen, S.S., Yu, J.S.: Stability and bifurcation on predator–prey systems with nonlocal prey competition. Discrete Contin. Dyn. Syst. 38(1),...
    • 20. Wu, S.H., Song, Y.L.: Stability and spatiotemporal dynamics in a diffusive predator-prey model with nonlocal prey competition. Nonlinear...
    • 21. Cao, X., Jiang, W.H.: Double zero singularity and spatiotemporal patterns in a diffusive predator–prey model with nonlocal prey competition....
    • 22. Liu, Z.H., Magal, P., Xiao, D.M.: Bogdanov–Takens bifurcation in a predator–prey model. Z. Angew. Math. Phys. 67(6), 137 (2016)
    • 23. Zhang, X.M., Liu, Z.H.: Periodic oscillations in age-structured ratio-dependent predator–prey model with Michaelis–Menten type functional...
    • 24. Yang, P.: Hopf bifurcation of an age-structured prey–predator model with Holling type II functional response incorporating a prey refuge....
    • 25. Yang, P., Wang, Y.S.: Hopf bifurcation of an infection-age structured eco-epidemiological model with saturation incidence. J. Math. Anal....
    • 26. Liu, Z.H., Yuan, R.: Takens–bogdanov singularity for age structured models. Discrete Contin. Dyn. Syst.-Ser. B 25(6), 2041–2056 (2019)
    • 27. Yang, P., Wang, Y.S.: Periodic solutions of a delayed eco-epidemiological model with infection-age structure and Holling type II functional...
    • 28. Yang, P., Wang, Y.S.: Existence and properties of Hopf bifurcation in an age-dependent predation system with prey harvesting. Commun....
    • 29. Yang, P., Wang, Y.S.: Hopf–Zero bifurcation in an age-dependent predator–prey system with Monod– Haldane functional response comprising...
    • 30. Liu, Z.H., Magal, P.: Bogdanov–Takens bifurcation in a predator-prey model with age structure. Z. Angew. Math. Phys. 72(4), 4 (2021)
    • 31. Iannelli, M.: Mathematical Theory of Age-Structured Population Dynamics. Applied Mathematics Monographs, vol. 7. Giardini editori e stampatori,...
    • 32. Anita, S.: Analysis and Control of Age-Dependent Population Dynamics. Mathematical Modelling: Theory and Applications, vol. 11. Springer,...
    • 33. Cushing, J.M., Saleem, M.: A predator prey model with age structure. J. Math. Biol. 14(2), 231–250 (1982)
    • 34. Thiemea, H.R.: “Integrated semigroups” and integrated solutions to abstract Cauchy problems. J. Math. Anal. Appl. 152(2), 416–447 (1990)
    • 35. Liu, Z.H., Magal, P., Ruan, S.G.: Hopf bifurcation for non-densely defined Cauchy problems. Z. Angew. Math. Phys. 62(2), 191–222 (2011)
    • 36. Magal, P., Ruan, S.G.: Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured...
    • 37. Liu, Z.H., Magal, P., Ruan, S.G.: Normal forms for semilinear equations with non-dense domain with applications to age structured models....
    • 38. Chu, J.X., Liu, Z.H., Magal, P., Ruan, S.G.: Normal forms for an age structured model. J. Dyn. Differ. Equ. 28, 733–761 (2016)
    • 39. Tang, H., Liu, Z.H.: Hopf bifurcation for a predator–prey model with age structure. Appl. Math. Model. 40, 726–737 (2016)
    • 40. Yang, P., Wang, Y.S.: On oscillations to a 2D age-dependent predation equations characterizing Beddington–Deangelis type schemes. Discrete...
    • 41. Thiemea, H.R.: Semiflows generated by Lipschitz perturbations of non-densely defined operators. Differ. Integral Equ. 3, 1035–1066 (1990)
    • 42. Liu, Z.H., Magal, P., Ruan, S.G.: Projectors on the generalized eigenspaces for functional differential equations using integrated semigroups....
    • 43. Ducrot, A., Liu, Z.H., Magal, P.: Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems. J. Math....
    • 44. Thieme, H.R.: Quasi-compact semigroups via bounded perturbation. In: Arino, O., Axelrod, D., Kimmel, M. (eds.) Advances in Mathematical...
    • 45. Chow, S.N., Li, C.Z., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge (1994)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno