Ir al contenido

Documat


Stability and Hopf Bifurcation in the General Langford System

  • Gaihui Guo [1] ; Jingjing Wang [1] ; Meihua Wei [1]
    1. [1] Shaanxi University of Science and Technology

      Shaanxi University of Science and Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 4, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper is concerned with the general Langford system under homogeneous Neumann boundary conditions. The stabilities of constant solutions are discussed for the general Langford ODE and PDE systems, respectively. Based on the stability results, for the Langford ODE system, the existence, bifurcation direction and stability of periodic solutions are established. Then for the Langford PDE system, by the center manifold theory and the normal form method, the direction of Hopf bifurcation and the stability of spatially homogeneous periodic solutions are investigated. Finally, numerical simulations are shown to support and supplement the results of theoretical analysis.

  • Referencias bibliográficas
    • 1. Yi, F.Q., Wei, J.J., Shi, J.P.: Diffusion-driven instability and bifurcation in the Lengyel-Epstein system. Nonlinear Anal. Real World...
    • 2. Du, L.L., Wang, M.X.: Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model. J. Math. Anal. Appl. 366, 473–485...
    • 3. Merdan, H., Kayan, S.: Hopf bifurcations in Lengyel-Epstein reaction-diffusion model with discrete time delay. Nonlinear Dyn. 79, 1757–1770...
    • 4. Guo, G.H., Wu, J.H., Ren, X.H.: Hopf bifurcation in general Brusselator system with diffusion. Appl. Math. Mech. (Engl. Ed.) 32, 1177–1186...
    • 5. Li, Y.: Hopf bifurcations in general systems of Brusselator type. Nonlinear Anal. Real World Appl. 28, 32–47 (2016)
    • 6. Li, Z.X., Song, Y.L.,Wu, C.F.: Turing instability and Hopf bifurcation of a spatially discretized diffusive Brusselator model with zero-flux...
    • 7. Furter, J.E., Eilbeck, J.C.: Analysis of bifurcations in reaction-diffusion systems with no-flux boundary conditions: the Sel’kov model....
    • 8. Han, W., Bao, Z.H.: Hopf bifurcation analysis of a reaction-diffusion Sel’kov system. J. Math. Anal. Appl. 356, 633–641 (2009)
    • 9. Wang, P., Gao, Y.B.: Turing instability of the periodic solutions for the diffusive Selkov model with saturation effect. Nonlinear Anal....
    • 10. Liu, P., Shi, J.P., Wang, Y.W., Feng, X.H.: Bifurcation analysis of reaction-diffusion Schnakenberg model. J. Math. Chem. 51(8), 2001–2019...
    • 11. Saadi, F.A., Champneys, A., Gai, C., Kolokolnikov, T.: Spikes and localised patterns for a novel Schnakenberg model in the semi-strong...
    • 12. Wang, J.F., Wei, J.J., Shi, J.P.: Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems. J....
    • 13. Terry, A.J.: Predator-prey models with component Allee effect for predator reproduction. J. Math. Biol. 71, 1325–1352 (2015)
    • 14. Li, X.S., Pang, D.F., Wallhead, P., Bellerby, R.G.J.: Dynamics of an aquatic diffusive predator-prey model with double Allee effect and...
    • 15. Yi, F.Q., Wei, J.J., Shi, J.P.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J. Differ. Equ....
    • 16. Wang, M.X.: Stability and Hopf bifurcation for a prey-predator model with prey-stage structure and diffusion. Math. Biosci. 212(2), 149–160...
    • 17. Zhang, J.F., Li, W.T., Yan, X.P.: Hopf bifurcation and Turing instability in spatial homogeneous and inhomogeneous predator-prey models....
    • 18. Guo, G.H., Li, B.F., Lin, X.L.: Hopf bifurcation in spatially homogeneous and inhomogeneous autocatalysis models. Comput. Math. Appl....
    • 19. Yi, F.Q., Liu, J.X., Wei, J.J.: Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model. Nonlinear...
    • 20. Wei, M.H., He, Y.N., Azam, M.: Spatiotemporal patterns and bifurcations with degeneration in a symmetry glycolysis model. Commun. Nonlinear...
    • 21. Yang, R.Z., Nie, C.X., Jin, D.: Spatiotemporal dynamics induced by nonlocal competition in a diffusive predator-prey system with habitat...
    • 22. Yang, R.Z., Wang, F.T., Jin, D.: Spatially inhomogeneous bifurcating periodic solutions induced by nonlocal competition in a predator-prey...
    • 23. Hopf, E.: A mathematical example displaying features of turbulence. Commun. Pure Appl. Math. 1, 303–322 (1948)
    • 24. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)
    • 25. Nikolov, S., Bozhkov, B.: Bifurcations and chaotic behavior on the Lanford system. Chaos Solitons Fractals 21, 803–808 (2004)
    • 26. Krishchenko, A.P., Starkov, K.E.: Localization of compact invariant sets of nonlinear systems with applications to the Lanford system....
    • 27. Nikolov, S.G., Vassilev, V.M.: Completely integrable dynamical systems of Hopf-Langford type. Commun. Nonlinear Sci. Numer. Simul. 92,...
    • 28. Nikolov, S.G., Vassilev, V.M.: Assessing the non-linear dynamics of a Hopf-Langford type system. Mathematics 9(18), 2340 (2021)
    • 29. Guo, G.H., Wang, X.N., Lin, X.L., Wei, M.H.: Steady-state and Hopf bifurcations in the Langford ODE and PDE systems. Nonlinear Anal. Real...
    • 30. Liu, S.H., Tang, J.S., Qin, J.Q., Yin, X.B.: Bifurcation analysis and control of periodic solutions changing into invariant tori in Langford...
    • 31. Cui, Y., Liu, S.H., Tang, J.S., Meng, Y.M.: Amplitude control of limit cycles in Langford system. Chaos Solitons Fractals 42, 335–340...
    • 32. Yang, Q.G., Yang, T.: Complex dynamics in a generalized Langford system. Nonlinear Dyn. 91, 2241–2270 (2018)
    • 33. Bashkirtseva, I., Ryashko, L.: Stochastic bifurcations, chaos and phantom attractors in the Langford system with tori. Int. J. Bifurc....
    • 34. Fu, Y.G., Li, J.B.: Bifurcations of invariant torus and knotted periodic orbits for the generalized HopfLangford system. Nonlinear Dyn....
    • 35. Musafirov, E., Grin, A., Pranevich, A.: Admissible perturbations of a generalized Langford system. Int. J. Bifurc. Chaos 32(03), 2250038...
    • 36. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno