Ir al contenido

Documat


Qualitative Behaviour of a Caputo Fractional Differential System

  • Ruixiong Fan [1] ; Nan Yan [1] ; Chen Yang [2] ; Chengbo Zhai [1]
    1. [1] Shanxi University

      Shanxi University

      China

    2. [2] Shanxi Vocational University of Engineering Science and Technology
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 4, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this article, we investigate a new system of fractional differential equations with integral boundary conditions. The proposed problem contains Caputo fractional derivative operators, integer derivatives and Riemann integral boundary values. We get the existence and uniqueness of solutions for the new system of fractional differential equations based on a fixed point theorem of increasing φ-(h, e)-concave operators. The results show that the unique solution exists in a given set and can be approximated by making an iterative sequence for any initial point in the given set. Further, an example is given to illustrate the effectiveness and applicability of our main results.

  • Referencias bibliográficas
    • 1. Chandok, S., Sharma, R.K., Radenovi´c, S.: Multivalued problems via orthogonal contraction mappings with application to fractional differential...
    • 2. Abdelhedi, W.: Fractional differential equations with a ψ-Hilfer fractional derivative. Comput. Appl. Math. 40(2), 53 (2021)
    • 3. Baleanu, D., Ghassabzade, F.A., Nieto, J.J., Jajarmi, A.: On a new and generalized fractional model for a real cholera outbreak. Alex....
    • 4. Jajarmi, A., Baleanu, D., Sajjadi, S.S., Nieto, J.J.: Analysis and some applications of a regularized ψ-Hilfer fractional derivative. J....
    • 5. Jajarmi, A., Baleanu, D., Zarghami Vahid, K., Mohammadi Pirouz, H., Asad, J.H.: A new and general fractional Lagrangian approach: a capacitor...
    • 6. Erturk, V.S., Godwe, E., Baleanu, D., Kumar, P., Asad, J., Jajarmi, A.: Novel fractional-order Lagrangian to describe motion of beam on...
    • 7. Ajeel, M.S., Gachpazan, M., Soheili, A.: Solving a system of nonlinear fractional partial differential equations using the Sinc–Muntz collocation...
    • 8. Abbas, S., Al Arifi, N., Benchohra, M., Henderson, J.: Coupled Hilfer and Hadamard random fractional differential systems with finite delay...
    • 9. Zhai, C., Jiang, R.: Unique solutions for a new coupled system of fractional differential equations. Adv. Differ. Equ. 2018, 1 (2018)
    • 10. Zhai, C., Zhu, X.: Unique solution for a new system of fractional differential equations. Adv. Differ. Equ. 2019, 394 (2019)
    • 11. Yang, C., Zhai, C., Zhang, L.: Local uniqueness of positive solutions for a coupled system of fractional differential equations with integral...
    • 12. Kilbas, A.A., Srivastava, H.H., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier Science...
    • 13. Rabbani, M., Das, A., Hazarika, B., Arab, R.: Measure of noncompactness of a new space of tempered sequences and its application on fractional...
    • 14. Ahmad, B., Ntouyas, S., Alsaedi, A.: On a coupled system of fractional differential equations with coupled nonlocal and integral boundary...
    • 15. Xu, J., Wei, Z., O’Regan, D.: Infinitely many solutions for fractional Schrodinger–Maxwell equations. J. Appl. Anal. Comput. 9(3), 1165–1182...
    • 16. Yang, C.: Existence and uniqueness of positive solutions for boundary value problems of a fractional differential equation with a parameter....
    • 17. Wang, G., Pei, K., Chen, Y.: Stability analysis of nonlinear Hadamard fractional differential system. J. Franklin. I(356), 6538–6546 (2019)
    • 18. Wang, J., Zada, A., Waheed, H.: Stability analysis of a coupled system of nonlinear implicit fractional anti-periodic boundary value problem....
    • 19. Wang, W.: Properties of Green’s function and the existence of different types of solutions for nonlinear fractional BVP with a parameter...
    • 20. Zhang, L., Ahmad, B., Wang, G., Agarwal, R.P.: Nonlinear fractional integro-differential equations on unbounded domains in a Banach space....
    • 21. Zhai, C., Xu, L.: Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations...
    • 22. Zhai, C., Wang, W.: Solutions for a system of Hadamard fractional differential equations with integral conditions. Numer. Funct. Anal....
    • 23. Santra, S., Mohapatra, J.: Analysis of the L1 scheme for a time fractional parabolic-elliptic problem involving weak singularity. Math....
    • 24. Santra, S., Mohapatra, J.: A novel finite difference technique with error estimate for time fractional partial integro-differential equation...
    • 25. Panda, A., Santra, S., Mohapatra, J.: Adomian decomposition and homotopy perturbation method for the solution of time fractional partial...
    • 26. Baitiche, Z., Derbazi, C., Benchohra, M., Nieto, J.J.: Monotone iterative technique for a new class of nonlinear sequential fractional...
    • 27. Redhwan, S.S., Shaikh, S.L., Abdo, M.S.: Caputo-Katugampola type implicit fractional differential equation with two-point anti-periodic...
    • 28. Redhwan, S.S., Shaikh, S.L., Abdo, M.S.: Implicit fractional differential equation with anti-periodic boundary condition involving Caputo-Katugampola...
    • 29. Derbazi, C., Hammouche, H., Benchohra, M.: Weak solutions for some nonlinear fractional differential equations with fractional integral...
    • 30. Derbazi, C., Baitiche, Z., Benchohra, M.: Cauchy problem with ψ-Caputo fractional derivative in Banach spaces. Adv. Theory Nonlinear Anal....
    • 31. Hammad, H.A., Rashwan, R.A., Noeiaghdam, S.: Stability analysis for a tripled system of fractional pantograph differential equations with...
    • 32. Amiri, P., Samei, M.E.: Existence of Urysohn and Atangana-Baleanu fractional integral inclusion systems solutions via common fixed point...
    • 33. Etemad, S., Iqbal, I., Samei, M.E., Rezapour, S., Alzabut, J.: Weerawat Sudsutad and Izzet Goksel, Some inequalities on multi-functions...
    • 34. Eswari, R., Alzabut, J., Samei, M.E., Zhou, H.: On periodic solutions of a discrete Nicholson’s dual system with density-dependent mortality...
    • 35. Subramanian, M., Alzabut, J., Baleanu, D., Samei, M.E., Zada, A.: Existence, uniqueness and stability analysis of a coupled fractional-order...
    • 36. Adjimi, N., Boutiara, A., Samei, M.E., Etemad, S., Rezapour, S., Kaabar, M.K.A.: On solutions of a hybrid generalized Caputo-type problem...
    • 37. Sarwar, S., Zahid, M.A., Iqbal, S.: Mathematical study of fractional-order biological population model using optimal homotopy asymptotic...
    • 38. Boutiara, A., Kaabar, M.K.A., Siri, Z., Samei, M.E., Yue, X.: Investigation of the generalized proportional Langevin and Sturm–Liouville...
    • 39. Boutiara, A., Benbachir, M., Alzabut, J., Samei, M.E.: Monotone iterative and upper-lower solution techniques for solving the nonlinear...
    • 40. Boutiara, A., Benbachir, M., Kaabar, M.K.A., Martínez, F., Samei, M.E., Kaplan, M.: Explicit iteration and unbounded solutions for fractional...
    • 41. Boutiara, A., Benbachir, M.: Existence and uniqueness results to a fractional q-difference coupled system with integral boundary conditions...
    • 42. Zhai, C., Li, W.: ϕ-(h, e)-concave operators and applications. J. Math. Anal. Appl. 454, 571–584 (2017)
    • 43. Guezane-Lakoud, A., Khaldi, R., Boucenna, D., Nieto, J.J.: On a multipoint fractional boundary value problem in a fractional Sobolev space....
    • 44. Zhang, X., Liu, Z., Peng, Z., He, Y., Wei, L.: The right equivalent integral equation of impulsive Caputo fractional- order system of...
    • 45. Slimane, I., Nazir, G., Nieto, J.J., Yaqoob, F.: Mathematical analysis of Hepatitis C Virus infection model in the framework of non-local...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno