Ir al contenido

Documat


Schrödinger–Bopp–Podolsky System with Steep Potential Well

  • Qiutong Zhu [1] ; Chunfang Chen [1] ; Chenggui Yuan [2]
    1. [1] Nanchang University

      Nanchang University

      China

    2. [2] Swansea University

      Swansea University

      Castle, Reino Unido

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 4, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we study the following Schrödinger–Bopp–Podolsky system:

      −u + λV(x)u + q2ϕu = f (u) −ϕ + a22ϕ = 4πu2, where u, ϕ : R3 → R, a > 0, q > 0, λ is real positive parameter, f satisfies supper 2 lines growth. V ∈ C(R3, R), which suppose that V(x) repersents a potential well with the bottom V −1(0). There are no results of solutions for the system with steep potential well in the current literature because of the presence of the nonlocal term. Throughout the truncation technique and the parameter-dependent compactness lemma, we get a poistive energy solution uλ,q for λ large and q small. In the last part, we explore the asymptotic behavior as q → 0, λ → +∞.

  • Referencias bibliográficas
    • 1. Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for superlinear elliptic problems on RN . Commun. Part. Differ. Eqn. 20, 1725–1741...
    • 2. Bartsch, T., Pankov, A., Wang, Z.Q.: Nonlinear Schrödinger equations with steep potiential well. Commun. Contemp. Math. 3, 549–569 (2001)
    • 3. Ding, Y.H., Szulkin, A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Part. Differ. Eqn....
    • 4. Liu, H.D., Zhao, F.K., Zhao, L.G.: Existence and concentration of solutions for the Schrödinger Poisson equations with steep well potential....
    • 5. Jiang, Y.S., Zhou, H.S.: Schrödinger-Poisson system with steep potential well. J. Differ. Eqn. 251, 582–608 (2011)
    • 6. Wang, Z.P., Zhou, H.S.: Positive solutions for nonlinear Schrödinger equations with deepening potential well. J. Eur. Math. Soc. 11, 545–573...
    • 7. Bopp, F.: Eine Lineare theorie des Elektrons. Ann. Phys. 430, 345–384 (1940)
    • 8. Podolsky, B.: A generalized electrodynamics. Phys. Rev. 62, 68–71 (1942)
    • 9. Mie, G.: Grundlagen einer Theorie der Materie. Ann. Phys. 345, 1–66 (1913)
    • 10. Born, M.: Modified field equations with a finite radius of the electron. Nature 132, 282 (1933)
    • 11. Born, M.: On the quantum theory of the electromagnetic field. Proc. R. Soc. Lond. Ser. A 143, 410–437 (1934)
    • 12. Born, M., Infeld, L.: Foundations of the new field theory. Nature 132, 1004 (1933)
    • 13. Born, M., Infeld, L., Born, L., Infeld, M.: Foundations of the new field theory. Proc. R. Soc. Lond. Ser. A 144, 425–451 (1934)
    • 14. Frenkel, J.: 4/3 Problem in classical electrodynamics. Phys. Rev. E 54, 5859–5862 (1996)
    • 15. Bonheure, D., Casteras, J.B., dos Santos, E.M., Nascimento, R.: Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger...
    • 16. Bertin, M.C., Pimentel, B.M.: Hamilton-Jacobi formalism for Podolskys electromagnetic theory on the null-plane. J. Math. Phys. 58, 082902...
    • 17. Bufalo, R., Pimentel, B.M., Soto, D.E.: Causal approach for the electron-positron scattering in generBalized quantum electrodynamics....
    • 18. Bufalo, R., Pimentel, B.M., Soto, D.E.: Normalizability analysis of the generalized quantum electroBdynamics from the causal point of...
    • 19. Cuzinatto, R.R., de Melo, C.A.M., Medeiros, L.G., Pimentel, B.M., Pompeia, P.J.: Bopp-Podolsky black holes and the no-hair theorem. Eur....
    • 20. Cuzinatto, R.R., de Melo, E.M., Medeiros, L.G., Souza, C.N.D., Pimentel, B.M.: De Broglie-Proca and Bopp-Podolsky massive photon gases...
    • 21. Chen, S.T., Tang, X.H.: On the critical Schrödinger-Bopp-Podolsky system with general nonlinearities. Nonlinear Anal. 195, 111734 (2020)
    • 22. Yang, H., Yuan, Y.X., Liu, J.: On Nonlinear Schrödinger–Bopp–Podolsky system with asymptotically periodic potentials. J. Function Spaces,...
    • 23. Li, L., Pucci, P., Tang, X.H.: Ground state solutions for the nonlinear Schrödinger-Bopp-Podolsky system with critical Sobolev exponent....
    • 24. Bahrouni, A., Missaoui, H.: On the Schrödinger-Bopp-Podolsky system: ground state and least energy nodal solutions with nonsmooth nonlinearity....
    • 25. Figueiredo, G.M., Siciliano, G.: Multiple solutions for a Schrödinger–Bopp–Podolsky system with positive potentials. arXiv:2006.12637...
    • 26. Zhang, F.B., Du,M.: Existence and asymptotic behavior of positive solutions for Kirchoff type problems with steep potential well. J. Differ....
    • 27. Du, M.: Positive solutions for the Schrödinger-Poisson system with steep potential well. Commun. Contemp. Math. (2022). https://doi.org/10.1142/S0219199722500560
    • 28. Fibich, G., Ilan, B., Papanicolaou, G.: Self-focusing with fourth-order dispersion. SIAM J. Appl. Math. 62, 1437–1462 (2002)
    • 29. Li, F.Y., Li, Y.H., Shi, J.P.: Existence of a positive solution to Kinchhoff type problems without compactness conditions. J. Differ....
    • 30. dAvenia, P., Siciliano, G.: Nonlinear Schrödinger equation in the Bopp-Podolsky electrodynamics: solutions in the electrostatic case....
    • 31. Lieb, E.H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)
    • 32. Ekeland, I.: Convexity Methods in Hamiltonian Mechanics. Springer, Berlin (1990)
    • 33. Ding, Y.H.: Variational Methods for Strongly Indefinite Problems. World Scientific, Singapore (2007)
    • 34. Li, G.B., Ye, H.Y.: Ground state solutions of Nehair-Pohozaev type for Schrödinger Poisson problems with general potentials. Disc. Contin....
    • 35. Willem, M.: Minimax Theorems, Birkhauser ¨ , Boston (1996)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno