Ir al contenido

Documat


Deep ordinal classification based on the proportional odds model

  • Autores: Victor Manuel Vargas Forero, Pedro Antonio Gutiérrez Peña Árbol académico, César Hervás Martínez Árbol académico
  • Localización: From Bioinspired Systems and Biomedical Applications to Machine Learning: 8th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2019, Almería, Spain, June 3–7, 2019, Proceedings, Part II / coord. por Hojjat Adeli; José Manuel Ferrández Vicente (dir. congr.) Árbol académico, José Ramón Álvarez Sánchez (dir. congr.) Árbol académico, Félix de la Paz López (dir. congr.) Árbol académico, Francisco Javier Toledo Moreo (dir. congr.), 2019, ISBN 978-3-030-19651-6, págs. 441-451
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper proposes a deep neural network model for ordinalregression problems based on the use of a probabilistic ordinal link function in the output layer. This link function reproduces the Proportional Odds Model (POM), a statistical linear model which projects each pattern into a 1-dimensional space. In our case, the projection is estimated by a non-linear deep neural network. After that, patterns are classified using a set of ordered thresholds. In order to further improve the results, we combine this link function with a loss cost that takes the distance between classes into account, based on the weighted Kappa index. The experiments are based on two ordinal classification problems, and the statistical tests confirm that our ordinal network outperforms the nominalversion and other proposals considered in the literature.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno