Ir al contenido

Documat


Content based image retrieval by convolutional neural networks

  • Autores: Safa Hamreras, Rafaela Benitez Rochel Árbol académico, Bachir Boucheham, Miguel A. Molina Cabello, Ezequiel López Rubio Árbol académico
  • Localización: From Bioinspired Systems and Biomedical Applications to Machine Learning: 8th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2019, Almería, Spain, June 3–7, 2019, Proceedings, Part II / coord. por Hojjat Adeli; José Manuel Ferrández Vicente (dir. congr.) Árbol académico, José Ramón Álvarez Sánchez (dir. congr.) Árbol académico, Félix de la Paz López (dir. congr.) Árbol académico, Francisco Javier Toledo Moreo (dir. congr.), 2019, ISBN 978-3-030-19651-6, págs. 277-286
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, we present a Convolutional Neural Network(CNN) for feature extraction in Content Based Image Retrieval (CBIR).The proposed CNN aims at reducing the semantic gap between lowlevel and high-level features. Thus, improving retrieval results. Our CNN is the result of a transfer learning technique using Alexnet pretrained network. It learns how to extract representative features from a learning database and then uses this knowledge in query feature extraction.Experimentations performed on Wang (Corel 1K) database show a significant improvement in terms of precision over the state of the art classic approaches.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno