Ir al contenido

Documat


Cerrando una brecha: una reflexión multidisciplinar sobre la discriminación algorítmica

  • Dellunde, Pilar [1] Árbol académico ; Pujol, Oriol [1] Árbol académico ; Vitrià, Jordi [1] Árbol académico
    1. [1] Universitat Autònoma de Barcelona

      Universitat Autònoma de Barcelona

      Barcelona, España

  • Localización: Daimon: revista internacional de filosofía, ISSN-e 1989-4651, ISSN 1130-0507, Nº 90 (Septiembre-Diciembre), 2023 (Ejemplar dedicado a: Monográfico sobre Inteligencia Artificial / coord. por Ariel Guersenzvaig, David Casacuberta Sevilla Árbol académico, Elsa González Esteban Árbol académico, Domingo García Marzá), págs. 63-80
  • Idioma: español
  • DOI: 10.6018/daimon.562811
  • Títulos paralelos:
    • Bridging a gap: A multidisciplinary reflection on algorithmic discrimination
  • Enlaces
  • Resumen
    • español

      Este artículo aborda el concepto de discriminación algorítmica desde una perspectiva conjunta de la filosofía y la ciencia de la computación, con el propósito de establecer un marco de discusión común para avanzar en el despliegue de las inteligencias artificiales en las sociedades democráticas. Se presenta una definición no normativa de discriminación y se analiza y contextualiza el concepto de algoritmo usando un enfoque intencional, enmarcándolo en el proceso de toma de decisiones e identificando las fuentes de discriminación, así como los conceptos detrás de su cuantificación para terminar exponiendo algunos límites y desafíos.

    • English

      This article presents a joint reflection from philosophy and computer science on the concepts behind algorithmic discrimination with the aim of providing a common framework for discussion to advance the deployment of artificial intelligence in democratic societies. A non-normative definition of discrimination is presented, and the concept of algorithm is analyzed and contextualized using an intentional approach, framing it in the decision-making process and identifying the sources of discrimination, as well as the concepts behind its quantification, ending by exposing some limits and challenges.

  • Referencias bibliográficas
    • Aristoteles (1984), Nichomachean Ethics, Princeton University Press, Vol.3.1131a10–b15
    • Baeza-Yates, R. (2018), “Bias on the web”. Commun. ACM. 61, pp. 54–61.
    • Barocas, S.; Selbst, A. D. (2016), “Big Data’s Disparate Impact”, Cal. Law Review, Vol.104
    • Binns R. (2020), “On the apparent conflict between individual and group fairness”, ACM Proceedings of Int. Conf. on Fairness Accountability...
    • Brooks, D. (2013), “Opinion | The Philosophy of Data”. New York Times, https:// www. nytimes.com/2013/02/05/opinion/brooks-the-philosophy-of-data.html
    • Carey, A.; Wu, X. (2022), “The Causal Fairness Field Guide: Perspectives from social and formal sciences”, Frontiers in Big Data, Vol 5.
    • Chouldechova, A. (2017), “Fair prediction with disparate impact: A study of bias in recidivism prediction instruments”. Big data, 5(2), pp....
    • Creel, K.; Hellman D. (2022), “The algorithmic Leviathan: arbitrariness, fairness, and opportunity in algorithmic decision-making systems.”...
    • Dennett, D. C. (1987), The intentional stance. MIT Press.
    • Eidelson, B. (2015), Discrimination and Disrespect. Oxford University Press.
    • EU P Serv (2019) “A Governance Framework for algorithmic accountability and transparency”. Recuperado de: “https://www.europarl.europa.eu/stoa/en/document/EPRS_...
    • Fazelpour, S.; Danks, D. (2020), “Algorithmic bias: Senses, sources, solutions.” Philosophy Compass 16.8: e12760.
    • Fernández-Loría, C.; Foster P. (2022), “Causal decision making and causal effect estimation are not the same… and why it matters.” INFORMS...
    • Guersenzvaig, A.; Casacuberta, D. (2022), “La quimera de la objetividad algorítmica: dificultades del aprendizaje automático en el desarrollo...
    • Harari, Y. N. (2015), Homo Deus: A Brief History of Tomorrow. Random House. Traducción al castellano de la editorial Debate.
    • Hardt, M.; Recht, B. (2022), Patterns, predictions, and actions: Foundations of machine learning. Princeton University Press.
    • Jacobs, A. Z.; Wallach, H. (2021), “Measurement and fairness”. In Proceedings of the 2021 ACM Conference on fairness, accountability, and...
    • Johnson, R. A.; Zhang, S. (2022) “What is the Bureaucratic Counterfactual? Categorical versus Algorithmic Prioritization in US Social Policy”....
    • Lazar, S. (2022), “Legitimacy, Authority, and the Political Value of Explanations”. arXiv preprint arXiv:2208.08628.
    • Lippert-Rasmussen, K. (2014), Born Free and Equal?. Oxford University Press.
    • Martin, K.; Waldman, A. (2022), “Are algorithmic decisions legitimate? The effect of process and outcomes on perceptions of legitimacy of...
    • Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; Galstyan, A. (2021), “A Survey on Bias and Fairness in Machine Learning”. ACM Comput....
    • Mitchell, T. M. (1980), “The need for biases in learning generalizations “.New Jersey: Department of Computer Science, Laboratory for Computer...
    • Mitchell, S.; Potash, E.; Barocas, S.; D’Amour, A.; Lum, K. (2021), “Algorithmic fairness: Choices, assumptions, and definitions.” Annual...
    • Mittelstadt, B. D.; Allo, P.; Taddeo, M.; Watcher, S.; Floridi, L. (2016), “The ethics of algorithms: mapping the debate”. Big Data &...
    • Mittelstadt, B., Wachter, S., Russell, C.s (2023), “The Unfairness of Fair Machine Learning: Levelling down and strict egalitarianism by default”....
    • Narayanan, A. (2022), “The limits of the quantitative approach to discrimination.” James Baldwin lecture [transcript], Princeton University.
    • Pearl, J.; Mackenzie, D. (2018), The book of why: the new science of cause and effect. Basic books.
    • Plecko, D; Bareinboin, E. (2023) “Reconciling predictive and statistical parity: A causal approach”, arXiv:2306.05059v1.
    • Pratt, L. Y. (1993), “Discriminability-based transfer between neural networks” (PDF). NIPS Conference: Advances in Neural Information Processing...
    • Rudin C. (2019), “Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead”. Nat....
    • Ruf, B.; Detyniecki, M. (2021), “Towards the Right Kind of Fairness in AI”, arXiv:2102.08453v7.
    • Seng, M.; Floridi, L.; Singh, J. (2021), “Formalising tradeoffs beyond algorithmic fairness: lessons from ethical philosophy and welfare economics”....
    • Simon, J.; Wong, P.; Rieder, G. (2020), “Algorithmic bias and the Value Sensitive Design approach”. Internet Policy Review, 9(4):1-16.
    • Sternberger, D. (1968), “Legitimacy” in International Encyclopedia of the Social Sciences (ed. D.L. Sills) New York: Macmillan, Vol. 9, p....
    • Unceta, I. (2020), “Environmental Adaptation and Differential Replication in Machine Learning”, Entropy (Basel). 3;22(10):1122.
    • Verma, S.; Rubin, J. (2018), “Fairness definitions explained”. IEEE/ACM Int Workshop on Software Fainess,
    • von Neumann, J.; Morgenstern, O. (1944), Theory of Games and Economic Behavior, Princeton: Princeton University Press.
    • Wachter, S. (2022), “The theory of artificial immutability: Protecting algorithmic groups under anti-discrimination law.” arXiv preprint arXiv:2205.01166.
    • Zerilli, J. (2022), “Explaining Machine Learning Decisions”. Philosophy of Science, 89(1), pp. 1-19. doi:10.1017/psa.2021.13

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno