Ir al contenido

Documat


Towards a general method for logical rule extraction from time series

  • Autores: Guido Sciavicco Árbol académico, Ionel Eduard Stan, Alessandra Vaccari
  • Localización: From Bioinspired Systems and Biomedical Applications to Machine Learning: 8th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2019, Almería, Spain, June 3–7, 2019, Proceedings, Part II / coord. por Hojjat Adeli; José Manuel Ferrández Vicente (dir. congr.) Árbol académico, José Ramón Álvarez Sánchez (dir. congr.) Árbol académico, Félix de la Paz López (dir. congr.) Árbol académico, Francisco Javier Toledo Moreo (dir. congr.), 2019, ISBN 978-3-030-19651-6, págs. 3-12
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Extracting rules from temporal series is a well-establishedtemporal data mining technique. The current literature contains a number of different algorithms and experiments that allow one to abstract temporal series and, later, extract meaningful rules from them. In this paper, we approach this problem in a rather general way, without resorting, as many other methods, to expert knowledge and ad-hoc solutions.Our very simple temporal abstraction method allows us to transform time series into timelines, which can be then used for logical temporal rule extraction using an already existing temporal adaptation of the algorithm APRIORI. We have tested this approach on real data, obtaining promising results.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno