Ir al contenido

Documat


Deep support vector classification and regression

  • Autores: David Díaz Vico, Jesús Prada Lobato, Adil Omari, José R. Dorronsoro
  • Localización: From Bioinspired Systems and Biomedical Applications to Machine Learning: 8th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2019, Almería, Spain, June 3–7, 2019, Proceedings, Part II / coord. por Hojjat Adeli; José Manuel Ferrández Vicente (dir. congr.) Árbol académico, José Ramón Álvarez Sánchez (dir. congr.) Árbol académico, Félix de la Paz López (dir. congr.) Árbol académico, Francisco Javier Toledo Moreo (dir. congr.), 2019, ISBN 978-3-030-19651-6, págs. 33-43
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Support Vector Machines, SVM, are one of the most popularmachine learning models for supervised problems and have proved to achieve great performance in a wide broad of predicting tasks. However, they can suffer from scalability issues when working with large sample sizes, a common situation in the big data era. On the other hand, Deep Neural Networks (DNNs) can handle large datasets with greater ease and in this paper we propose Deep SVM models that combine the highly non-linear feature processing of DNNs with SVM loss functions. As we will show, these models can achieve performances similar to those of standard SVM while having a greater sample scalability


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno