Ir al contenido

Documat


Periodogram connectivity of EEG signals for the detection of dyslexia

  • Autores: Francisco Jesús Martínez Murcia Árbol académico, A. Ortiz Barragan, Rafael Morales Ortega, J. P. Lopez, J. Luque, D. Castillo, F. Segovia, J.J. Ortega López
  • Localización: Understanding the Brain Function and Emotions: 8th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2019 Almería, Spain, June 3–7, 2019 Proceedings, Part I / José Manuel Ferrández Vicente (dir. congr.) Árbol académico, José Ramón Álvarez Sánchez (dir. congr.) Árbol académico, Félix de la Paz López (dir. congr.) Árbol académico, Francisco Javier Toledo Moreo (dir. congr.), Hojjat Adeli (dir. congr.), 2019, ISBN 978-3-030-19591-5, págs. 350-359
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Electroencephalography (EEG) signals provide an importantsource of information of brain activity at different areas. This information can be used to diagnose brain disorders according to different activation patterns found in controls and patients. This acquisition technology can be also used to explore the neural basis of less evident learning disabilities such as Developmental Dyslexia (DD). DD is a specific difficulty in the acquisition of reading skills not related to mental age or inadequate schooling, whose prevalent is estimated between 5% and 12% of the population. In this paper we propose a method to extract discriminative features from EEG signals based on the relationship among thespectral density at each channel.This relationship is computed by means of different correlation measures, inferring connectivity-like markers that are eventually selected and classified by a linear support vector machine.The experiments performed shown AUC values up to 0.7, demonstrating the applicability of the proposed approach for objective DD diagnosis.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno